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A new model with full coupling between micro- and macroscale motion is de-
veloped for compressible multiphase mixtures. The equations of motion and the
coupling microstructural equation (an analogue of the Rayleigh–Lamb equation)
are obtained by using the Hamilton principle of stationary action. In the particular
case of bubbly fluids, the resulting model contains eight partial differential equations
(one-dimensional case) and is unconditionally hyperbolic. The equations are solved
numerically by an adapted Godunov method. The model and methods are validated
for two very different test problems. The first one consists of a wave propagating in a
liquid containing a small quantity of gas bubbles. Computed oscillating shock waves
fit perfectly the experimental data. Then the one-dimensional multiphase model is
used as a reduction tool for the multidimensional interaction of a shock wave with a
large bubble. Good agreement is again obtained.c© 2002 Elsevier Science

Key Words:multiphase flows; nonconservative hyperbolic equations; shock waves;
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INTRODUCTION

A typical example of a fluid with micro-inertia is a fluid containing gas bubbles. Since the
pioneering works of Iordansky [21], Kogarko [26], and van Wijngaarden [45], a number of
mathematical models of bubbly fluids have been proposed. At least two essentially different
methods were used to derive the governing equations. The first is based on averaging of
the local instantaneous conservation laws; see [7, 22, 30], among others. The second, the
variational approach, uses Hamilton’s principle of stationary action; see [3, 4, 8, 13, 14] and
others. The advantage of the variational method is that the knowledge of only one scalar
function written in terms of the average variables, the Lagrangian of the system, allows us

326

0021-9991/02 $35.00
c© 2002 Elsevier Science

All rights reserved.



TWO-PHASE COMPRESSIBLE FLOWS 327

to obtain a closed system of governing equations. However, it is not an easy task to find an
explicit form of the Lagrangian in terms of the average variables. To do so, a number of
hypotheses should be developed.

By using the variational approach, Berdichevsky [4] and Bedford and Drumheller [3]
obtained the two-fluid equations in the case of barotropic components. Geurst [13, 14]
considered the case when one of the components is incompressible. By using the Hamilton
principle, he obtained the governing equations and studied their hyperbolicity. Pauchon
and Smereka [31] compared the averaging and the variational approach in the case of
incompressible dispersed flows. They found that in the dilute limit, the equations of motion
obtained by both methods are the same. In the one-dimensional case, they proposed a criteria
of hyperbolicity of the governing equations. In all these papers, the method of Lagrange
multipliers was used to take into account the constraints expressing the conservation of mass
and the volume fraction constraint (the sum of the volume fractions must equal to one). A
different approach was used by Gavrilyuket al.[11], Gavrilyuk and Gouin [12], and Gouin
and Gavrilyuk [19] for the case in which one of the components is incompressible.

They integrated differential constraints in Lagrange coordinates and found the varia-
tion of Hamilton’s action directly in terms of virtual displacements. This permits one to
find simultaneously the governing equations (which do not form a system of conservation
laws) and a complete set of Rankine–Hugoniot conditions. The fact that the knowledge
of the Lagrangian of the system gives automatically weak formulation of the governing
equations is well known for one-component flows; see [18, 37, 39] and others. A simple
criteria of hyperbolicity was also proposed: the convexity of the internal energy provides
the hyperbolicity of the governing equations.

In this paper we extend the approach “without Lagrange multipliers” to the case of
dispersed flow of two compressible components when each of the components may have
its own temperature. This case is very important for a variety of applications: Richtmyer–
Meshkov instability, deflagration-to-detonation transition in porous energetic materials, etc.
Among the models describing an immiscible mixture of two compressible fluids, the model
of Baer and Nunziato [2] (henceforth referred to as the BN model) has to be mentioned.
A variant of the BN model has also been proposed by Saurel and Abgrall [36]. The BN
model consists of the mass conservation laws for each component and nonconservative
momentum and energy equations. This model is closed by a transport equation for the
volume concentrationϕ, which is an independent variable in the case of compressible
fluids. The model is hyperbolic unlike the one based on the assumption of “equal pressure”
(see, for example, a discussion on the “equal pressure” model in Stewart and Wendroff [42]).
However, the BN model should be generalized in order to describe correctly phenomena
with inertia effects (for example, the flow features being exhibited during the shock wave
propagation in bubbly fluids).

To obtain a set of governing equations describing the phenomena with internal inertia,
we use an extended Hamilton’s principle with a Lagrangian which is not limited to the
case of small volume fraction of gas bubbles. The system is closed by a second-order
differential equation forϕ obtained by varying the Hamilton action with respect toϕ. This
equation is an analogue of the Rayleigh–Lamb equation describing the bubble pulsations
in an incompressible fluid; see [27, 33] and others. We prove the sufficient criterion of
hyperbolicity of the system: it is hyperbolic if the total energy is convex. The model is
specified for the case when the added mass term is negligible compared with the inertia
term. In contrast to the BN model, new terms related to the inertia effects come also into the
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momentum and energy equations for the continuous phase. The governing equations are
presented in a form suitable for numerical calculations. In particular, the equation for the
volume concentration can be rewritten in terms of the Riemann invariants. For this system
we can prove the unconditional hyperbolicity: the equations are hyperbolic apart from a set
of parameters of the zero measure. Finally, dissipative algebraic terms compatible with the
second law of thermodynamics are introduced in the model.

A numerical method proposed by Saurel and Abgrall [36] based on the Godunov method
(1979) is then adapted to this model and provides an efficient resolution scheme. The
ability of the model to solve correctly various physical problems is demonstrated for the
two following cases:

• the shock wave propagation in a fluid containing small gas bubbles (bubbly fluid),
• the shock wave interaction with the material interfaces.

In the first case, a very good agreement between numerical results and experimental
results of Kamedaet al.[23] is demonstrated. In the second case, the one-dimensional two-
fluid model was used as a reduction tool for the two-dimensional problem of interaction of
a shock wave with a large bubble. Good agreement between the 1D and the averaged 2D
results is again obtained.

1. GENERAL APPROACH BASED ON HAMILTON’S PRINCIPLE

OF STATIONARY ACTION

The Lagrangian formulation of classical mechanics is based on the Hamilton variational
principle. This principle states that the real motion of a system is the extremal of the Hamilton
action in a class of trajectories joining two fixed points in coordinate space. The Hamilton
action is defined as an integral of the Lagrangian over time. In general, the Lagrangian
of the system is the difference between kinetic and potential energies. Formulation of the
Hamilton principle for the continuum mechanics, which is an infinite-dimensional system,
can be found in Serrin [40], Lin [28], Seliger and Whitham [38], Sedov [37], and others.
An extension of the Hamilton principle for the two-fluid hydrodynamics is formulated in
Berdichevsky [4], Bedford and Drumheller [3], Geurst [13, 14], Pauchon and Smereka [31],
etc. In this section we extend the variational approach to the case of two nonbarotropic
compressible components.

1.1. Basic Notations

We consider a mixture of two immiscible components. Eachα-th constituent has its own
averaged characteristics: the local velocityuα, the local densityρ0

α, the partial densityρα,
the volume fractionϕα, the local entropy per unit massηα, the local internal energy per
unit massεα(ρ0

α, ηα), and the local temperatureθα, α = 1, 2. The partial densitiesρα are
defined by the formulae

ρα = ϕαρ0
α. (1.1)

They obey the mass conservation law

∂

∂t
ρα + div(ραuα) = 0. (1.2)
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For dissipation-free motions the local entropies conserve along the trajectories

dα
dt
ηα = 0 (1.3)

with

dα
dt
= ∂

∂t
+ uα∇.

The partial volume entropiesSα defined by the formulae

Sα = ραηα (1.4)

satisfy for continuous motions the entropy conservation law

∂

∂t
Sα + div(Sαuα) = 0. (1.5)

We suppose that the volume fractionsϕα satisfy the saturation condition

ϕ1+ ϕ2 = 1. (1.6)

We shall use the subscript “1” and “2” for the continuous and dispersed phase, respectively,
and shall often set:

ϕ2 = ϕ, ϕ1 = 1− ϕ. (1.7)

We also suppose that the Gibbs identity for each component is satisfied

θαdηα = dεα + pαd

(
1

ρ0
α

)
. (1.8)

Here pα(ρ0
α, ηα) are local average pressures.

1.2. Total Energy of the System

To use the Hamilton principle of stationary action, we need an expression of the total
energy of mixture. We propose to take the total energy per unit volume in the form:

E =
2∑
α=1

ρα
|uα|2

2
(1)

+ m

2

(
diϕ

dt

)2

(2)

+
2∑
α=1

ραεα

(
ρα

ϕα
,

Sα
ρα

)
(3)

+ (ρ1+ ρ2)e(ϕ)
(4)

+ k

2
|∇ϕ|2
(5)

+ d

2
|u2− u1|2
(6)

. (1.9)

In the analysis that follows in this section, we shall not use this particular form of the total
energy to derive the governing equations. They will be derived in the general case. However,
to do numerical calculations, this explicit expression will be needed in the following sections.
Let us precisely define each term in (1.9):
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(1) represents the kinetic energy of translational motion;
(2) is the pulsation kinetic energy,

di

dt
= ∂

∂t
+ ui∇

(the subscript “i ” means “interface”); the expression for the interface velocityui should
be givena priori. The choice ofui is very important because it defines the structure of
governing equations (see a discussion at the end of Section 2).

(3) is the internal energy per unit volume;
(4) corresponds to the potential energy related to the internal structure (the “configuration

energy”; Passmanet al. [32]). The functione should be givena priori;
(5) takes into account the energy due to the macroscopic nonhomogeneity of the mixture.

The volume fractionϕ plays the role of order parameter as in the Cahn–Hillard approach
(1957);

(6) is the kinetic energy related to the added mass effect.

In a particular case of dilute suspension of gas bubbles of the same size, the following
classical expressions for the coefficientsm andd could be given:

m≈ ρ0
1

3

(
3

4πN

)2/3

ϕ−1/3, d ≈ ρ0
1
ϕ

2
.

HereN is the number of bubbles per unit volume which is supposed to be constant. This
is a quite good approximation for the problems which will be considered in Section 5. The
formulae form andd are justified as follows. Consider the bubble of radiusR(t) moving
with the velocityu2 in an incompressible perfect fluid having the velocityu1 at infinity. The
kinetic energy of the fluid resulting from the relative motion of the bubble and its radial
pulsations is (see, for example, Lamb, [27])

Tf = πR3ρ0
1

2

(
4

(
d R

dt

)2

+ 2

3
|u2− u1|2

)
.

Then for a dilute bubbly fluid, when we neglect the bubble interaction, the kinetic energy
Tc

f of the fluid per unit volume in the presence ofN bubbles in the continuum limit (when
all the unknown functionsR, u1, u2 become functions of(t, x)) will be

Tc
f =

πR3ρ0
1 N

2

(
4

(
di R

dt

)2

+ 2

3
|u2− u1|2

)
.

The definition of the volume fractionϕ2 = ϕ = 4
3πR3N permits us to rewrite the final

expression for the volume kinetic energyTc
f in the form

Tc
f =

m(ϕ)

2

(
diϕ

dt

)2

+ d(ϕ)

2
|u2− u1|2,

with m(ϕ) andd(ϕ) defined above. This formula is a good approximation even for the case
of compressible fluid component. In the following, we choose

di

dt
= d1

dt

(see the discussion at the end of Section 2).
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The expression for the capillary term (5) could be given as follows. We take the capillary
energy in the formc|∇ρ|2/2, whereρ is the average densityρ = ρ1+ ρ2, andc = constis
the capillary coefficient [34]. By supposing that the average local densities are approximately
constants, we getc|∇ρ|2/2≈ c(ρ0

1 − ρ0
2)

2|∇ϕ|2/2. Hence,

k ≈ c
(
ρ0

1 − ρ0
2

)2
.

1.3. Lagrangian of the System

The Lagrangian of the system is taken in the usual formL = T −U , whereT is the
kinetic energy andU is the potential energy. Definition (1.9) of the total energy allows us
to separateE into the kinetic and the potential energy

T =
2∑
α=1

ρα
|uα|2

2
+ m

2

(
diϕ

dt

)2

+ d

2
|u2− u1|2,

(1.10)

U =
2∑
α=1

ραεα

(
ρα

ϕα
, ηα

)
+ ρe(ϕ)+ k

2
|∇ϕ|2.

If the translational derivative

di

dt

is Galilean invariant, this form of the Lagrangian guarantees Galilean invariance of the
governing equations. The variablesuα andηα are not very convenient for calculations.
We introduce new variables: the partial momentum of each componentjα = ραuα and the
partial entropySα. Consider the Lagrangian in a general form

L = L

(
j1, j2, ρ1, ρ2, S1, S2, ϕ,

∂ϕ

∂t
,∇ϕ

)
. (1.11)

We shall see later that the total energy (1.9) is the Legendre transformation ofL

E =
2∑
α=1

∂L

∂ jα
jα + ∂ϕ

∂t

∂L

∂
(
∂ϕ

∂t

) − L .

1.4. Virtual Motions and Variation of Dependent Variables

LetXα be Lagrangian coordinates ofα-th component. The motion of the mixture is given
by two smooth mapsx=ϕα(Xα, t). Let λ1, λ2 be real numbers in the vicinity of zero. Let
us consider two families of virtual motionsx = Φα(Xα, t, λα) such thatΦα(Xα, t, 0) =
ϕα(Xα, t). The virtual displacements corresponding to each family are defined by

ζα =
∂Φα

∂λα
(Xα, t, λα)

∣∣∣∣
λα=0

.

The virtual displacementsζα are defined as functions of the Lagrangian coordinates. In
the following we consider them as functions of Eulerian coordinates by using the inverse
mapXα = ϕ−1

α (x, t). The variations of the dependent variables for fixed values of Eulerian
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coordinates, corresponding to each family of virtual motions, are given by the formulae
(see for details Gavrilyuket al. [11], Gavrilyuk and Gouin [12]):

δαρα = −div(ραζα) (1.12)

δα jα =
∂

∂t
(ραζα)+ div(jα ⊗ ζα − ζα ⊗ jα) (1.13)

δαSα = −div(Sαζα). (1.14)

Here the divergence of a linear transformationA is defined as follows:div(Ah) = div(A)h
for any constant vectorh. In particular,

div(a⊗ b) = b diva+ ∂b
∂x

a

for any vector fieldsa andb.
The two familiesx = Φα(Xα, t, λα) are independent. They do not change the corre-

sponding volume fraction, which is an internal parameter of the mixture. The variation
of the Lagrangian through each family gives the equations of motion of each component.
Finally, we need a third independent family that permits us to vary only the volume fraction
ϕ. It can be chosen in the formϕ = ϕ̂(x, t, λ). The other parameters of the mixture are
unchanged. The variation of the volume fractionϕ for this family will be denoted byδϕ:

δϕ = ∂ϕ̂(x, t, λ)
∂λ

∣∣∣∣
λ=0

.

1.5. Euler–Lagrange Equations

Let B× [t1, t2] be a domain in the space–time. The Hamilton action

a =
t2∫

t1

dt
∫
B

L dx

submitted to the three one-parameter families becomes the function ofλα, α = 1, 2 or λ,
respectively. We denote:

δαa = da

dλα

∣∣∣∣
λα=0

, α = 1, 2 and δa = da

dλ

∣∣∣∣
λ=0

.

The equalitiesδαa = 0 andδa = 0 give the momentum equation for each component, and
the microstructural equation for the volume fractionϕ, respectively. We shall suppose that
the variationsζα andδϕ vanish on the boundary∂(B× [t1, t2]). For the familiesΦα, the
corresponding variations of the Hamilton action are

δαa =
t2∫

t1

dt
∫
B

dx
{
∂L

∂ jα
δα jα + ∂L

∂ρα
δαρα + ∂L

∂Sα
δαSα

}
. (1.15)

Let us denote

Kα = ∂L

∂ jα
, Rα = ∂L

∂ρα
, θα = − ∂L

∂Sα
. (1.16)
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The sign “minus” in the definition of temperatureθα is chosen in accordance with Gibbs
identity (1.8). Taking into account definitions (1.16) and formulae (1.12)–(1.14), we get
from (1.15):

δαa =
t2∫

t1

dt
∫
B

dx
{

Kα

(
∂

∂t
(ραζα)+ div(jα ⊗ ζα − ζα ⊗ jα)

)

− Rαdiv(ραζα)+ θαdiv(Sαζα)

}
.

Since the virtual displacementsζα vanish on the boundary∂(B× [t1, t2]), we obtain after
using the Gauss–Green–Ostrogradsky theorem

δαa =
t2∫

t1

dt
∫
B

dx
{
−ραζα

∂Kα

∂t
−
(
ζα

(
∂Kα

∂x

)
jα − jα

(
∂Kα

∂x

)
ζα

)

+ ραζα∇Rα − Sαζα∇θα
}
.

It can be written as

δαa =
t2∫

t1

dt
∫
B

dx
{
−ρα ∂Kα

∂t
− rot Kα × jα + ρα∇Rα − Sα∇θα

}
ζα.

Hence, the momentum equations are

ρα
∂Kα

∂t
+ rot Kα × jα − ρα∇Rα + Sα∇θα = 0, α = 1, 2. (1.17)

Now, let us calculate the variation corresponding to the third family

δa =
t2∫

t1

dt
∫
B

dx

{
∂L

∂ϕ
δϕ + ∂L

∂
(
∂ϕ

∂t

)δ(∂ϕ
∂t

)
+ ∂L

∂(∇ϕ)δ(∇ϕ)
}
.

Since

δ

(
∂ϕ

∂t

)
= ∂(δϕ)

∂t
, δ(∇ϕ) = ∇(δϕ),

we get by integration by parts and by using the fact thatδϕ vanishes on the boundary the
following equation forϕ:

δL

δϕ
≡ ∂L

∂ϕ
− ∂

∂t

(
∂L

∂
(
∂ϕ

∂t

))− div

(
∂L

∂(∇ϕ)
)
= 0. (1.18)

The microstructural equation (1.18) is the analogue of the Rayleigh–Lamb equation de-
scribing the bubble which expands and contracts in surrounding liquid; see [27, 33] and
others.



334 GAVRILYUK AND SAUREL

1.6. Conservation Laws and Hyperbolicity Criterion

The Noether theorem says that the governing equations (1.2), (1.5), (1.17), and (1.18)
admit the conservation of total momentum and total energy corresponding to the invariance
of the Lagrangian with respect to space-and-time shifts. These conservation laws can be
obtained by straightforward calculations. The total momentum conservation law is

∂

∂t

(
2∑
α=1

ραKα −∇ϕ ∂L

∂
(
∂ϕ

∂t

))+ div

(
2∑
α=1

(
jα ⊗ Kα −

(
jαKα + ρα ∂L

∂ρα
+ Sα

∂L

∂Sα

)
I

)

− ∂L

∂(∇ϕ) ⊗∇ϕ + L I

)
= 0.

Here I is the identity tensor. The total energy conservation law is

∂

∂t

(
2∑
α=1

jαKα + ∂ϕ
∂t

∂L

∂
(
∂ϕ

∂t

) − L

)
+ div

(
2∑
α=1

−Rα jα + Sαθαuα + ∂ϕ
∂t

∂L

∂(∇ϕ)

)
= 0.

In general, there are no additional conservation laws in terms of dependent variables. Hence,
the governing equations cannot be written in divergence form. This does not allow us to
obtain a sufficient number of Rankine–Hugoniot conditions by using the classical approach
based on the divergence form of equations. In the papers by Gavrilyuket al.[11] and Gouin
and Gavrilyuk [19], it was shown (in the case when one of the phases is incompressible)
that Hamilton’s principle gives a sufficient set of Rankine–Hugoniot conditions associated
with the nonconservative form of governing equations. The aim of the present paper does
not include the generalization of this result to the case of compressible mixtures. In this
section we focus on the question of hyperbolicity.

Of course, we are not able to calculate the eigenvalues in explicit form for the general
case. To prove the hyperbolicity, the only possibility is to rewrite governing equations in
symmetric form of Friedrichs. But the method, which permits us to rewrite automatically
governing equations in symmetric form, is also based on the divergence form of the gov-
erning equations (Godunov [16] and Friedrichs and Lax [10]). This is why we consider a
restrictive class ofpotentialflows, which admits a divergence form. Of course this diver-
gence form does not necessarily imply physical shock conditions.

The following definition of potential flows is given in Gavrilyuket al.[11] and Gavrilyuk
and Gouin [12]. It generalizes the definition of potential flows proposed by Geurst [13] (see
also Wallis [46]) for a particular case of a mixture with one incompressible component.

DEFINITION. The flow of theα-th component is calledpotential if rotKα = 0, ηα =
const.

Obviously, all the one-dimensional isentropic flows are potential. The equations of po-
tential motions are

∂

∂t
ρα+div jα = 0,

∂

∂t
Kα−∇

(
∂L

∂ρα

)
= 0,

∂

∂t

(
∂L

∂
(
∂ϕ

∂t

))+ div

(
∂L

∂(∇ϕ)
)
− ∂L

∂ϕ
= 0.

(1.19)
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Here

L = L

(
ρα, jα, ϕ,

∂ϕ

∂t
,∇ϕ

)

is the Lagrangian and

Kα = ∂L

∂ jα
.

System (1.19) is a system of conservation laws, which admits the energy conservation law
with the energy density

E =
2∑
α=1

∂L

∂ jα
jα + ∂ϕ

∂t

∂L

∂
(
∂ϕ

∂t

) − L ≡
2∑
α=1

Kα jα + ∂ϕ
∂t

∂L

∂
(
∂ϕ

∂t

) − L . (1.20)

It is possible to give a sufficient criterion of hyperbolicity of system (1.19) by using the
Godunov–Friedrichs–Lax approach (Godunov [16] and Friedrichs and Lax [10]). For this,
we have to rewrite the last equation of (1.19) as a conservative system of two first-order
quasi-linear equations. Let

b = ∂L

∂
(
∂ϕ

∂t

) , w = ∇ϕ.

We consider the energyE as function of the variablesρα,Kα, ϕ,b andw. Formula (1.20)
implies

∂E

∂ρα
= − ∂L

∂ρα
,

∂E

∂Kα

= jα,
∂E

∂ϕ
= −∂L

∂ϕ
,
∂E

∂w
= −∂L

∂w
,
∂ϕ

∂t
= ∂E

∂b
.

In these variables the equations of motion are written as

∂ρα

∂t
+ div

(
∂E

∂Kα

)
= 0,

∂Kα

∂t
+∇

(
∂E

∂ρα

)
= 0,

∂ϕ

∂t
= ∂E

∂b
, (1.21)

∂b

∂t
− div

(
∂E

∂w

)
+ ∂E

∂ϕ
= 0,

∂w
∂t
−∇

(
∂E

∂b

)
= 0.

If we add the following constraint on the initial conditionsrotKα|t=0= 0, (w−∇ϕ)|t=0= 0,
the system (1.21) will be equivalent to (1.19). We can now formulate the following theorem.
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THEOREM 1. If the energy E(ρα,Kα, ϕ,b,w) defined by(1.20) is convex, the system
(1.21) is hyperbolic. Moreover, the system can be rewritten as a symmetric t-hyperbolic
system in the sense of Friedrichs.

The proof of the theorem is a direct application of the result of Godunov–Friedrichs–Lax
to the system (1.21). This sufficient criterion is quite restrictive. In particular, it cannot be
applied if the pulsation energy is taken in the form (2) and the capillary energy (5) is equal
to zero (see the expression of the total energy (1.9)). Indeed, without the capillary energy,
the term

m

2

(
diϕ

dt

)2

is degenerate with respect tob andw. However, other possible forms of the pulsation energy
may exist, especially for not-small volume fractions of dispersed phase. For example, the
pulsation energy can be taken in the form

2∑
α=1

mα

2

(
dαϕ

dt

)2

. (1.22)

This energy is convex with respect tob and w if the velocitiesuα are different. When
Theorem 1 cannot be applied, direct calculations may be done for a given form of the total
energy of the system. We shall do it in the next section for the case of bubbly fluids.

2. APPLICATION TO BUBBLY FLUIDS (COMPRESSIBLE MIXTURES

WITH MICRO-INERTIA)

2.1. Simplified Form of the Governing Equations

We neglect capillary term (5) and virtual kinetic energy (6) in the expression of total
energy (1.9). The simplified Lagrangian is

L =
2∑
α=1

{ |jα|2
2ρα
+ m

2

(
d1ϕ

dt

)2

δ1α

}
−

2∑
α=1

ραεα − ρe(ϕ). (2.1)

Hereδ1α is the Kronecker symbol. We recall that (see formulae (1.4), (1.6), and (1.7))

ϕ = ϕ2, ϕ1 = 1− ϕ, εα
(
ρ0
α, ηα

) = εα(ρα
ϕα
,

Sα
ρα

)
,

ρ = ρ1+ ρ2,
d1

dt
= ∂

∂t
+ u1∇ = ∂

∂t
+ j1∇
ρ1
.

The index “2” will denote the gas phase (bubbles) and “1” the liquid phase. In (2.1) we
have supposed that the interface velocityui is equal to the velocity of the liquid phaseu1.
This hypothesis means that the pulsation energy

m

2

(
d1ϕ

dt

)2

is concentrated essentially in the liquid phase. This is eventually valid for small volume
fractions of bubbles. However, for large concentrations this choice may be not the best. Nev-
ertheless, we accept this hypothesis, which turns out to be quite good in practice. To simplify
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the final formulae we also suppose thatm= m(ϕ). In general,m= m(ϕ, ρ1, ρ2, S1, S2,

|u2− u1|). This parameter represents the mass of the fluid involved into the motion during
the bubble pulsations.

First, we shall give an explicit form of the equations of motion (1.17). We get from (2.1)
the following expressions:

Kα = ∂L

∂ jα
= uα +m

d1ϕ

dt

∇ϕ
ρ1
δ1α,

Rα = ∂L

∂ρα
= −|uα|

2

2
−m

(
d1ϕ

dt

)
u1∇ϕ
ρ1

δ1α − ∂

∂ρα
(ραεα)− e(ϕ)

θα = − ∂L

∂Sα
= ∂

∂Sα
(ραεα).

Hence, Eq. (1.17) is

ρα
dαKα

dt
−
(
∂Kα

∂x

)T

jα − ρα∇
(
−|uα|

2

2
−m

(
d1ϕ

dt

)
u1∇ϕ
ρ1

δ1α − ∂

∂ρα
(ραεα)− e(ϕ)

)
+ Sα∇

(
∂

∂Sα
(ραεα)

)
= 0.

The Gibbs identity (1.8) is equivalent to the identityd(ραεα) = θαdSα + µαdρα −
pαdϕα, where

µα = εα + pαϕα
ρα
− θαηα

is the Gibbs potential. It implies thatSαdθα + ραdµα = ϕαdpα. Hence,Sα∇θα + ρα∇µα =
ϕα∇ pα. We obtain then the momentum equations in the form

ρα
dαKα

dt
−
(
∂Kα

∂x

)T

jα +
(
∂uα
∂x

)T

jα + ϕα∇ pα+ ρα de

dϕ
∇ϕ

+ ρα∇
(

m

(
d1ϕ

dt

)
u1∇ϕ
ρ1

)
δ1α = 0.

For α = 2 we haveK2 = u2, δ12 = 0 and hence the momentum equation for the second
component is

∂ρ2u2

∂t
+ div(ρ2u2⊗ u2+ ϕ2 p2I )=

(
p2− ρ2

de

dϕ2

)
∇ϕ. (2.2)

Forα = 1 we get

K1 = u1+m
d1ϕ

dt

∇ϕ
ρ1

and the momentum equation will be

∂ρ1K1

∂t
+ div(ρ1u1⊗ K1+ p1ϕ1I ) = −

(
p1+ ρ1

de

dϕ

)
∇ϕ −m

d1ϕ

dt

(
∂u1

∂x

)T

∇ϕ.
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Or, in terms of the velocityu1

ρ1
d1u1

dt
+∇(p1ϕ1)+ ρ1

d1

dt

(
m

d1ϕ

dt

1

ρ1

)
∇ϕ +m

d1ϕ

dt
∇
(

d1ϕ

dt

)
=−

(
p1+ ρ1

de

dϕ

)
∇ϕ.
(2.3)

Finally, straightforward calculations give the microstructural equation (1.18) for the
Lagrangian (2.1) in the following condensed form:

d1

dt

(
m(ϕ)

2ρ2
1

(
d1ϕ

dt

)2)
=
(

p2− p1− ρ de

dϕ

)
d1ϕ

dt

1

ρ2
1

.

If we put

τ =
d1ϕ

dt

√
m

ρ1
,

the microstructural equation can be rewritten as the first-order quasi-linear system:

d1ϕ

dt
= τρ1√

m
(2.4)

d1τ

dt
=

p2− p1− ρ de
dϕ

ρ1
√

m
.

The variableτ is an analogue of the bubble radial velocity in the Rayleigh–Lamb equation
(see (5.1)). The variablesϕ, τ are the Riemann invariants corresponding to the velocity field
u1. They admit the following divergence form:

∂

∂t
(ρ1ϕ) + div(ρ1ϕu1) = τρ2

1√
m

(2.5)
∂

∂t
(ρ1τ) + div(ρ1τu1) =

p2− p1− ρ de
dϕ√

m
.

Equations (2.4), or their divergence form (2.5), allow us to rewrite the momentum equation
(2.3) for the first component in the following form:

ρ1
d1u1

dt
+∇

(
p1ϕ1+ m

2

(
d1ϕ

dt

)2)
=
(

p2− ρ2
de

dϕ

)
∇ϕ1 ≡ −

(
p2−ρ2

de

dϕ

)
∇ϕ. (2.6)

Equations (2.2), (2.4), and (2.6) supplemented by the equations of conservation of mass and
entropy (1.2) and (1.5), form a closed system of governing equations expressed in terms of
usual physical variables. We present them together to simplify the study of hyperbolicity.
They are

∂ρ2

∂t
+ div(ρ2u2) = 0

∂ρ1

∂t
+ div(ρ1u1) = 0

ρ2
d2u2

dt
+∇(p2ϕ2) =

(
p2− ρ2

de

dϕ

)
∇ϕ ≡ pi∇ϕ
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ρ1
d1u1

dt
+∇

(
p1ϕ1+ τ

2ρ2
1

2

)
=
(

p2− ρ2
de

dϕ

)
∇ϕ1 ≡ −pi∇ϕ

d1ϕ

dt
= τρ1√

m

d1τ

dt
=

p2− p1− ρ de
dϕ

ρ1
√

m

d2η2

dt
= 0

d1η1

dt
= 0. (2.7)

Here the pressure

pi = p2− ρ2
de

dϕ

may be interpreted as the average pressure on the interface separating the two phases.

2.2. Hyperbolicity

We will check now the hyperbolicity of system (2.7). For the sake of simplicity we
consider the one-dimensional case. Letcα be the sound velocity ofα-th component. We get

∇ p1 = ∂p1

∂ρ0
1

(∇ρ1

ϕ1
− ρ1

ϕ2
1

∇ϕ1

)
+ ∂p1

∂η1
∇η1 = c2

1
∇ρ1

ϕ1
+ c2

1ρ
0
1

ϕ1
∇ϕ + ∂p1

∂η1
∇η1.

The same for the second component

∇ p2 = ∂p2

∂ρ0
2

(∇ρ2

ϕ2
− ρ2

ϕ2
2

∇ϕ
)
+ ∂p2

∂η2
∇η2 = c2

2
∇ρ2

ϕ2
− c2

2ρ
0
2

ϕ2
∇ϕ + ∂p2

∂η2
∇η2.

Let v = (ρ2, ρ1, u2, u1, ϕ, τ, η2, η1)
T be the vector of unknown variables of dimension

eight (one-dimensional case). System (2.7) can be rewritten in the form

∂v
∂t
+ A(v)

∂v
∂x
= f,

where

f =
(

0, 0, 0, 0, τρ1/
√

m,

(
p2− p1− ρ de

dϕ

)/
(ρ1
√

m), 0, 0

)T
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and the matrixA is given as

A =



u2 0 ρ2 0 0 0 0 0

0 u1 0 ρ1 0 0 0 0
c2

2
ρ2

0 u2 0 −c2
2ρ

0
2 + p2−pi

ρ2
0 ∂p2

∂η2

ϕ2
ρ2

0

0 c2
1
ρ1
+ τ 2 0 u1

−p1+ pi + c2
1ρ

0
1

ρ1
ρ1τ 0 ∂p1

∂η1

ϕ1
ρ1

0 0 0 0 u1 0 0 0

0 0 0 0 0 u1 0 0

0 0 0 0 0 0 u2 0

0 0 0 0 0 0 0 u1


.

The eigenvalues ofA are given by

λ1,2,3 = u1

λ4 = u2
(2.8)

λ5,6 = u1±
√

c2
1 + ρ1τ 2

λ7,8 = u2± c2.

All the eigenvalues are real. The multiple eigenvalues correspond to the propagation of
entropy waves and concentration waves. It is quite easy to show that the right eigenvec-
tors of A constitute a basis of the spaceR8, if (u2− u1)

2 6= c2
2 (for details see Embid and

Baer [9] who studied a similar question). Hence, we have proved the following
theorem:

THEOREM 2. System(2.7) is hyperbolic, if (u2− u1)
2 6= c2

2. Its eigenvalues are calcu-
lated in explicit form.

The last two equations of (2.7) expressing the entropy conservation are not convenient for
numerical computations. We have to transform them into the energy equations. The energy
equations can be obtained by using the Gibbs identity (1.8) that gives, with the mass and
the entropy equations, the following identity:

∂

∂t

(
ραεα + |jα|

2

2ρα

)
+ div

(
jα

( |uα|2
2
+ εα + pα

ϕα

ρα

))
= uα

(
ρα

dαuα
dt
+∇(pαϕα)

)
− pα

dαϕα
dt

.

Using the momentum equations (2.2) and (2.6) and Eq. (2.4), we can transform the entropy
equations into the equivalent equations for the energy

∂

∂t

(
ρ2

(
ε2+ e+ |u2|2

2

))
+ div

(
ρ2u2

(
ε2+ e+ |u2|2

2
+ p2

ϕ2

ρ2

))
=−

(
p2− ρ2

de

dϕ

)
∂ϕ2

∂t
≡ −pi

∂ϕ

∂t
(2.9)
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∂

∂t

(
ρ1

(
ε1+ e+ ρ1τ

2

2
+ |u1|2

2

))
+ div

(
ρ1u1

(
ε1+ e+ ρ1τ

2+ |u1|2
2
+ p1

ϕ1

ρ1

))
=−

(
p2− ρ2

de

dϕ

)
∂ϕ1

∂t
≡ pi

∂ϕ

∂t
. (2.10)

System (2.7) where the entropy equations is replaced by the energy equations (2.9) and
(2.10), is reminiscent of the BN model (1986) (see also Kapilaet al. [24], Saurel and
Abgrall [36], and Bdzilet al. [5]). The difference is the presence of “turbulent” terms in
the momentum and energy equations for the continuous phase and a different form of the
equation for volume fraction. It is no more a transport equation forϕ, but a system of
two equations for the volume fraction and its velocity. The theory of Passmanet al. [32]
postulates this microstructural equation (see also a discussion in Bdzilet al. [5]). Here
a microstructural equation is explicitly obtained by using the variational approach. Its
implications on the other parts of the system are also obtained.

Another interesting point is the choice of the interface velocityui and the average inter-
face pressurepi . For a given velocityui the variational principle determines uniquely the
interface pressurepi . For example, for the bubbly fluid the choiceui = u1 implies pi = p2,
if we neglect the configuration energye(ϕ). In Baer and Nuziato (1986) the same asym-
metric duality takes place for the model describing deflagration-to-detonation transition in
granular materials.

It is necessary to underline that the variational principle is very sensitive to the choice of
the material derivative

di

dt
.

If we takeui = u2, it places “turbulent” terms into the equations for the dispersed phase
(gas phase) and not into the equations for the continuous phase (liquid phase). In general
situations, the choice of the “turbulent energy” in the form (1.22) would be preferable.

3. DISSIPATIVE MODEL

In our applications the “configuration energy”e(ϕ) is neglected. In this case, the interface
pressurepi = p2 and the interface velocityui = u1. We consider a dissipative model for this
particular case. To take into account a drag force between liquid and gas, the bubble damping,
and the external forceg, only minor modifications should be added into system (2.7). To
present the system in a form adopted already in Saurel and Abgrall [36] for numerical
calculations, we change the order in which the equations are written. The dissipative system
used for numerical computations can be cast in the form:

d1τ

dt
= p2− p1− pµ

ρ1
√

m

d1ϕ

dt
= τρ1√

m

∂ρ2

∂t
+ div(ρ2u2) = 0

∂

∂t
(ρ2u2)+ div(ρ2u2⊗ u2+ p2ϕ2I ) = p2∇ϕ + ρ2g+ λ(u1− u2)
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∂

∂t

(
ρ2

(
ε2+ |u2|2

2

))
+ div

(
ρ2u2

(
ε2+ |u2|2

2
+ p2

ϕ2

ρ2

))
=−p2

(
τρ1√

m
− u1∇ϕ

)
+ λu1(u1− u2)+ ρ2u2g

∂ρ1

∂t
+ div(ρ1u1) = 0

∂

∂t
(ρ1u1)+ div

(
ρ1u1⊗ u1+

(
ρ2

1τ
2

2
+ p1ϕ1

)
I

)
= −p2∇ϕ + ρ1g+ λ(u2− u1)

∂

∂t

(
ρ1

(
ε1+ ρ1τ

2

2
+ |u1|2

2

))
+ div

(
ρ1u1

(
ε1+ ρ1τ

2+ |u1|2
2
+ p1

ϕ1

ρ1

))
= p2

(
τρ1√

m
− u1∇ϕ

)
− λu1(u1− u2)+ ρ1u1g. (3.1)

Here the termλ(u1− u2) represents the Stokes type drag force,λ is a positive function
depending on the local characteristics of each component, andpµ is the viscous force
responsible for bubble damping. The following classical expression ofpµ reads for spherical
bubbles (see, for example, Plesset and Prosperetti [33]):

pµ = 4µl

R

d R

dt
.

Hereµl is the liquid dynamic viscosity,R is the bubble radius related to the gas volume
fractionϕ and the bubble number densityN by the formulaϕ = 4

3πR3N. By supposing
that N ≈ constand by replacingd

dt by d1
dt we can rewritepµ in the form

pµ = 4

3

τρ1µl

ϕ
√

m
. (3.2)

We will use formula (3.2) even in the case whenN is not constant (weak variations). In
this case we should add the following equation forN:

∂N

∂t
+ div(Nu2) = 0.

System (3.1) takes into account mechanical and thermal disequilibrium (we do not suppose
that the temperature of the phases are the same). But we do not add in our system relaxation
terms corresponding to the thermal disequilibrium.

Now, we have to verify the entropy inequality for system (3.1) (Passmanet al. [32] and
Baer and Nunziato [2]):

2∑
α=1

ρα
dαηα
dt
≥ 0. (3.3)

Straightforward calculations show that

2∑
α=1

ρα
dαηα
dt
= λ(u2− u1)

2

θ2
+ τρ1 pµ√

mθ1
.
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Expression (3.2) ofpµ guarantees that the second term is positive. Hence, the entropy
inequality (3.3) is verified.

4. NUMERICAL METHODS

In order to deal with the applications involving compressible mixtures, we need two types
of numerical methods. The first one is a method able to solve new multiphase model (3.1).
The second method is used to solve the classical multidimensional Euler equations in the
presence of material interfaces, in order to provide reference solutions for the multiphase
model.

4.1. Numerical Method for Multiphase Equations

In Saurel and Abgrall [36] a numerical method was proposed to resolve a nonconser-
vative system describing multiphase flows. We note that the structure of the new model
is close to the one proposed in Baer and Nunziato [2] and Saurel and Abgrall [36] (the
BN-type model). To show this we rewrite system (3.1) in the one-dimensional case. We
shall use the indices “l” and “g” for the local characteristics of the liquid and gas phases.
Moreover, we drop the superscript “0” in the notations of the local densities. Hence, we
denote

u1 = ul , u2 = ug, ϕ1 = ϕl , ϕ2 = ϕg, ρ1 = ϕlρl and ρ2 = ϕgρg.

We introduce now theκ variable. When this variable is equal to zero, the BN-type model
is recovered. Whenκ is equal to one, we get model (3.1). When the mass and heat transfer
are negligible, the both models can be rewritten in the condensed form,

∂χ

∂t
+ ul

∂χ

∂x
= SA(χ,U)

(4.1)
∂U
∂t
+ ∂F(U)

∂x
= H(U)

∂ϕg

∂x
+ SB(χ,U),

with:

χ = (κτ, ϕg)
T ,

U = (ϕgρg, ϕgρgug, ϕgρgEg, N, ϕ1ρ1, ϕlρl ul , ϕlρl El )
T ,

F = (ϕgρgug, ϕgρgu2
g + ϕg pg, ug(ϕgρgEg + ϕg pg), Nug,

ϕlρl ul , ϕlρl u
2
l + ϕl pl + κ(ϕlρl τ)

2/2, ul (ϕlρl El + ϕl pl + κ(ϕlρl τ)
2/2)

)T

H = (0, pg, pgul , 0, 0,−pg,−pgul )
T and Eg = εg + u2

g

/
2,

El = εl + u2
l

/
2+ κϕlρl τ

2
/

2.

The source vectorsSA(χ,U) andSB(χ,U) read

SA(χ,U) =
(
κ

pg − pl − pµ
ϕlρl
√

m
, κ
τϕlρl√

m
+ (1− κ)µ(pg − pl )

)T
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SB(χ,U) =
(

0, ϕgρgg+ λ(ul − ug),−κpg
τϕlρl√

m
+ (1− κ)pgµ(pg − pl )

+ λul (ul −ug), 0, 0, ϕlρl g− λ(ul − ug), κpg
τϕlρl√

m

− (1− κ)pgµ(pg− pl )− λul (ul − ug)

)T

.

The parameterµ in the BN model controls the rate at which the phase pressures tend toward
equilibrium. In model (3.1), this parameter is absent. The corresponding equation is replaced
by two quasi-linear equations describing the same tendency to equilibrium. The similarity
between the two models permits us to use the same numerical approach as proposed in
Saurel and Abgrall [36].

The major idea of the method is that the difference scheme should conserve the flow
uniform in pressure and velocity. This idea was proposed earlier by Abgrall [1], Shyue
[41], and Saurel and Abgrall [35] for the Euler equations of compressible fluids and was
applied for the contact interface problems even in the case when the initial conditions were
not uniform in pressure and velocity. Then this idea was adapted in Saurel and Abgrall
[36] to the BN-type model in order to determine the numerical approximations of the
nonconservative terms

H(U)
∂ϕg

∂x

and a nonconservative equation forϕg. In the model (4.1), a new variableτ appears.
We note that the pressure and velocity are uniform if and only if the source terms van-
ish. In particular, the pressure is uniform if and only ifτ is equal to zero. Hence, the
terms

H(U)
∂ϕg

∂x

and the equations forχ can be treated as in Saurel and Abgrall [36].
The hyperbolic solver is based on the second-order Godunov-type method following

the MUSCL strategy [44]. The source termsSA andSB are treated by a standard splitting
procedure [43], which is not detailed here.

The predictor step is done by using the primitive variable formulation in order to satisfy
the uniformity condition. The primitive variables vector is defined asW = (τ, ϕg, ρg, ug,

pg, ρl , ul , pl , N)T . The primitive variable vector at timetn and at pointxi is denoted
by Wn

i and the associated slopes byδWn
i . When the flow is uniform in velocity and

pressure, the slopes related to these variables are zero. The primitive variables at the
cell center and on the right and left sides of the cell at the half time step are given
by

Wn+1/2
i =Wn

i −1t/2B
(
Wn

i

)
δWn

i ; Wn+1/2
i+1/2,− =Wn+1/2

i + 1/2δWn
i ;

Wn+1/2
i−1/2,+ =Wn+1/2

i − 1/2δWn
i .

Analogous notations are used for the variablesU.
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HereB(Wn
i ) is the Jacobian matrix of the system and is given by

B(W) =



ul 0 0 0 0 0 0 0 0

0 ul 0 0 0 0 0 0 0

0 ρg(ug − ul )/ϕg ug ρg 0 0 0 0 0

0 0 0 ug 1/ρg 0 0 0 0

0 ρgc2
g(ug − u1)/ϕg 0 ρgc2

g ug 0 0 0 0

0 0 0 0 0 ul ρl 0 0

ϕlρl τ
pg−pl

ϕlρl
− ρl τ

2 0 0 0 ϕl τ
2 ul 1/ρl 0

0 0 0 0 0 0 ρl c2
l ul 0

0 0 0 N 0 0 0 0 ug



.

The sound speeds of the gas and liquid phases are denoted bycg andcl , respectively.
The unknown vector of conservative variablesU is then updated by the modified Godunov

formula:

Un+1
i = Un

i −
1t

1x

(
F
(
Un+1/2

i+1/2,−,U
n+1/2
i+1/2,+

)− F
(
Un+1/2

i−1/2,−,U
n+1/2
i−1/2,+

))+1tH
(
Un+1/2

i

)
1.

The conservative fluxes are obtained from the HLL solver [20]:

F
(
Un+1/2

i+1/2,−,U
n+1/2
i+1/2,+

)
= S+i+1/2Fn+1/2

i+1/2,− − S−i+1/2Fn+1/2
i+1/2,+ + S+i+1/2S−i+1/2

(
Un+1/2

i+1/2,+ − Un+1/2
i+1/2,−

)
S+i+1/2− S−i+1/2

. (4.2)

Nonconservative termsH(U) ∂ϕg

∂x are approximated by a formula consistent with the HLL
solver [36]:

1 = 1

1x

[
S+i+1/2ϕ

n+1/2
gi+1/2,− − S−i+1/2ϕ

n+1/2
gi+1/2,+

S+i+1/2− S−i+1/2

− S+i−1/2ϕ
n+1/2
gi−1/2,− − S−i−1/2ϕ

n+1/2
gi−1/2,+

S+i−1/2− S−i−1/2

]
.

The waves speedsS+ and S− in the HLL solver (4.2) are the maximum and minimum
eigenvalues of the Jacobian matrixB which coincide of course with the eigenvalues of the
matrix A (see (2.8)). The wave speeds are given by

S+i±1/2 = max
k
(0, λk,i±1/2,−, λk,i±1/2,+), S−i±1/2 = min

k
(0, λk,i±1/2,−, λk,i±1/2,+).

The unknown vector of nonconservative variablesχ is then updated by the scheme,

χn+1
i = χn

i −
1t

1x

(
(ulχ)

HLL
i+1/2− (ulχ)

HLL
i−1/2+ χn+1/2

i

(
ul

HLL
i+1/2− ul

HLL
i−1/2

))
, (4.3)

where(ulχ)
HLL
i+1/2 is obtained from the HLL flux (4.2), while the velocityul

HLL
i+1/2 is given by

ul
HLL
i+1/2 =

(ϕlρl ul )
HLL
i+1/2

(ϕlρl )
HLL
i+1/2

.
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Note that formula (4.3) is not the same as in Saurel and Abgrall [36]. This slight modification
yields better convergence.

The conservative state variables at the cell boundary are defined again under HLL ap-
proximation:

UHLL
i+1/2

(
Un+1/2

i+1/2,−,U
n+1/2
i+1/2,+

) = S+i+1/2Un+1/2
i+1/2,+ − S−i+1/2Un+1/2

i+1/2,− + Fn+1/2
i+1/2,− − Fn+1/2

i+1/2,+
S+i+1/2− S−i+1/2

.

4.2. Numerical Method for the 2D Euler Equations in the Presence
of Contact Interfaces

In Section 5 we will show the comparison between 1D computations by using the mul-
tiphase model (3.1) and 2D numerical experiments simulating the interaction of a shock
wave with a bubble of different gas. The aim is to show that the 1D multiphase model is a
reasonable reduction of the averaged 2D problem.

To obtain the 2D results we need to solve the Euler equations in a situation involving
a 2D contact interface separating two gases. We recall here the basic ingredients of this
method [1, 35, 41].

The dynamics of each pure material is governed by the Euler equations:

∂ρ

∂t
+ div(ρu) = 0

∂ρu
∂t
+ div(ρu⊗ u+ pI ) = 0 (4.4)

∂ρE

∂t
+ div(ρEu+ pu) = 0.

This system is closed by the stiffened gas equation of state:p = (γ − 1)ρε −
γ p∞ with standard notations for unknowns. The parameters of the equation of stateγ

and p∞ are different for each material and are discontinuous at the contact interface.
The method that follows is specific to this type of equation of state. Generalization of
the method to the Mie–Gruneisen–type equation of state is done in Massoniet al.
[29].

In order to deal with very large deformations, we wish to solve these equations by
using a Eulerian method. This poses the well-known problem of artificial diffusion of
contact discontinuities. At the contact interface, the density and internal energy is smeared
over several mesh points. Since the interface separates media with different equations
of state, the computation of pressure, sound speed, and all thermodynamic variables is
critical.

The parameters of the equation of state are function of space and time:γ = γ (x, t)
andp∞ = p∞(x, t), x = (x, y)T . The method consists of a succession of one-dimensional
sweeps along each direction [43] over a Cartesian mesh. Consider, for example, a step
along thex-direction (the step along they-direction is analogous). The Euler system (4.4)
should be supplemented by several evolution equations [35]. First, two evolution equations
for the state parameters are necessary. Second, an evolution equation for the kinetic energy
associated to they-velocity component is necessary. Each one-dimensional step consists in
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the resolution of the system:

∂ω

∂t
+ u

∂ω

∂x
= 0

(4.5)
∂U
∂t
+ ∂F(U)

∂x
= 0,

with U=(ρ, ρu, ρv, ρE, ρv2/2)T , F(U)=(ρu, ρu2+ p, ρuv, u(ρE+ p), ρuv2/2)T and

ω =
(

1

γ − 1
,
γ p∞
γ − 1

)T

.

Resolution is based on a second-order Godunov scheme with the same type of predictor
step under primitive variables formulation as in Section 4.1. The update of the unknown
variables is given by the formulae

ωn+1
i = ωn

i −
1t

1x

(
u∗i+1/2ω

∗
i+1/2− u∗i−1/2ω

∗
i−1/2+ ωn+1/2

i

(
u∗i+1/2− u∗i−1/2

))
and

Un+1
i = Un

i −
1t

1x

(
F∗
(
Un+1/2

i+1/2,−,U
n+1/2
i+1/2,+

)− F∗
(
Un+1/2

i−1/2,−,U
n+1/2
i−1/2,+

))
,

whereω∗i+1/2, u∗i+1/2, andF∗(Un+1/2
i+1/2,−,U

n+1/2
i+1/2,+) are the state parameters, the velocity in

x-direction and the flux, respectively, obtained from the solution of the Riemann problem of
system (4.5). The Riemann solver for this system is such that the extra variables (ω, v, v2/2)
do not change across the right and left waves. This Riemann solver is an obvious extension
of a conventional exact Riemann solver for the Euler equations.

5. TEST PROBLEMS

Model (3.1) couples the microscale and macroscale motions in a unique set of hyperbolic
PDEs. The first test problem we are interested in will be to put into evidence an important
influence of the microscopic motion on the macroscopic one. We consider the shock wave
propagation in a bubbly fluid and compare numerical results obtained by using a 1D model
(3.1) with experimental ones. The second test problem examines the aptitude of model (3.1)
to restore averaged two-dimensional numerical results obtained for the 2D Euler equations
for the problem of shock–bubble interaction. This topic is close to the one examined by
Glimm et al. [15].

5.1. Shock Wave Propagation in Bubbly Fluids

Interesting experimental and theoretical works on the shock wave propagation in bubbly
fluids have been done for more than 30 years. Some old experimental works were suffering
because of a lack of accuracy in physical measurements and because of the presence of
solute gases producing the creation of new bubbles.

The experimental results were also sensible to the initial bubble dispersion. Careful ex-
periments have been recently done in Japan by Kamedaet al. [23] using a liquid exempt of
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FIG. 1. Schematic representation of the bubbly shock tube.

solute gases. They preserved in their experiments a uniform bubble size-and-space distribu-
tion. The experimental apparatus consists of a vertical shock tube. The bubbles are injected
on the bottom of the tube and rise by natural and forced convection. A shock wave interacts
with the free surface, transmitting a compression wave into the mixture. The experimental
situation is shown in Fig 1. A typical record obtained with a pressure gauge placed into the
liquid is shown in Fig. 2.

Figure 2 represents the difference between instantaneous pressure and hydrostatic pres-
sure at a given position in the shock tube versus time. The strong coupling between wave
dynamics and bubbles pulsation is clearly visible. The experimental conditions and physical
data are summarized in Table I.

5.1.1. Rayleigh–Lamb Test Problem

This first test is very basic and consists of the following. We consider a tube filled with
a bubbly fluid. Both phases are uniform and initially at rest. Only a pressure difference
is present between the phases. Thus, each bubble must follow the behavior of an isolated
bubble governed by the Rayleigh–Lamb equation [27]:

RR̈+ 3/2Ṙ2 = (pg− pl )/ρl . (5.1)
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FIG. 2. A typical pressure signal inside the shock tube filled by a bubbly fluid (courtesy of Professor Kameda,
University of Tokyo).

This equation is equivalent to (2.4) if we neglect the surface energye(ϕ) and substitute

ρ0
1 = ρl ≈ const, ϕ = 4

3
πR3N

and

m(ϕ) = ρl

3

(
3

4πN

)2/3

ϕ−1/3.

The Rayleigh–Lamb equation is easy to solve by assuming thatpl andρl are constant and
the gas obeys the polytropic law:pgR3γ = cst. In order to compare the results obtained by
solving this equation with those obtained by model (3.1), it is necessary assume that:

• All space derivatives disappear. It is what occurs under uniform initial conditions.
• The liquid pressure remains constant. To fulfill this condition, the liquid pressure is

imposed to be 2× 105 Pa instead of using the calculation with equation of state.

TABLE I

Experimental Conditions and Physical Data for the Bubbly Shock Tube

Liquid Silicone oil

Viscosity 0.00415 (Pa s)
Surface tension 0.00208 (N/m)
Density 953 kg/m3
Sound speed at standard conditions 979 m/s
Stiffened gas equation of state parameters γ = 3, P∞ = 3.04 108 Pa

Gas SF6

Specific heat ratio 1.09
Molar mass 146 g
Initial temperature 309 K
Initial bubble radius at the location of the pressure gauge 0.613 mm
Pressure gauge location with respect to the free surface 1.462 M
Final pressure jump due to shock wave compression 130.6 KPa
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FIG. 3. Comparison between the Rayleigh–Lamb solution and model (3.1) for a uniform bubbly mixture.

The corresponding results are shown in Fig. 3. The two curves and ODE and PDE
solutions are superimposed.

5.1.2. Kameda et al. [23] Test Problem

Due to the large dilution of the bubbles and of the high-density ratio between fluids, only
low sliding between phases is allowed. For this situation it is reasonable to take an infinite
velocity relaxation coefficient (λ→+∞). We will adopt for resolution the relaxation
procedure detailed in Saurel and Abgrall [36], rather than solving a stiff differential problem.
Of course, the model can also be used for finite relaxation coefficientλ.

Instead of simulating a total shock tube with the gas chamber, we consider the impact of
a piston with velocity 0.427 m/s, corresponding to the overpressure of 130 KPa as in the
Kamedaet al. [23] experiments, at the distance 1.462 m from the free surface (pressure
gauge location). Initial conditions in the tube are shown in Fig. 4 where the gravity effects
are visible. The numerical results are shown in Fig. 5 at times 1.92 ms, 3.84 ms, and 5.76 ms.
The strong coupling between the macroscopic and microscopic motion (pulsations) is clearly
visible.

The graphs of liquid pressure and mixture velocity clearly show the splitting of the
initial signal into two waves: low and high-frequency waves. The velocity of the large-
amplitude low-frequency wave (5 KHz) is 290 m/s and is close to the gas sound velocity.
This is in perfect agreement with the experimental measurement (“about 300 m/s”). The
low-amplitude high-frequency wave (20–40 KHz) propagates at the velocity of 827 m/s,
which is close to the liquid sound speed.

We conclude this paragraph by a validation with experimental results by Kamedaet al.
[23]. They recorded a pressure signal at a given point of space versus time. We compare here
the experimental results shown in Fig. 6 with our numerical results. The number of cells
used in the computation is 2500. Experimental results are in bold lines, while numerical
ones are in thin lines.

The first three oscillations of large amplitude show a nearly perfect agreement. On the next
oscillations, the agreement is a little less accurate but is always inside the experimental error
bar of 15 KPa. The precursor wave, predicted by the model (3.1), was not mentioned in the
experiments of Kamedaet al. [23]. However, it was experimentally observed, for example
by Kedrinsky [25]. The present results are obtained without any empirical relations.
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FIG. 4. Initial conditions for the Kamedaet al. [23] test problem.

5.2. Two-phase One-dimensional Model as a Reduction Tool
for Multidimensional Problems

We study the two-dimensional shock wave interaction with a light gas bubble (in fact, a
square cylinder) inside a heavy gas. For this configuration we compute a 2D “reference”
solution of the Euler equations by using the numerical method described in Section 4.2.
We compare the numerical results obtained by using model (3.1) with the averaged 2D
“reference” solution.

The physical parameters of the configuration considered are the following. The center
of the mass of a square gas cylinder is located at the distance of 2 m on thex-axis. This
cylinder is placed inside a shock tube filled with a gas of higher density. The light gas is
at rest and has an initial density of 1 kg/m3 and a pressure of 105 Pa. The gas polytropic
coefficient is equal to 1.4. The still heavy fluid fills the rest of the domain. The heavy gas
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FIG. 5. Two-phase variable profiles obtained by model (3.1) at times 1.92 ms, 3.84 ms and 5.76 ms. Kameda
et al. [23] test problem.
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FIG. 5.—Continued

polytropic exponent is equal to 3. Its initial density is 10 kg/m3. The high-pressure (106 Pa)
chamber begins atx = 0 and ends atx = 1.5 m. The low-pressure (105 Pa) chamber begins
at x = 1.5 m and ends atx = 3.5 m. The total tube width is 0.60 m. This is summarized in
Fig. 7.

The 2D evolution of the density field are shown in Fig. 8 at time 1.16 ms, 2.14 ms,
3.13 ms, 4.23 ms, 5.36 ms, 6.50 ms, 7.63 ms, 8.76 ms, 9.89 ms, and 10.09 ms.

The first graph shows the initial stage of the shock interaction with the bubble. In the
second graph, bubble deformation begins and the shock wave transmitted forms again.
In the third graph, the shock is completely reconstructed. The bubble is now highly de-
formed. A first jet is clearly visible on the symmetry axis of the domain, producing a bubble
rupture. The secondary bubble is compressed again by another Richtmyer–Meshkov in-
stability. From the fourth graph to the end the bubble undergoes an intense rotation. The
total number of cells used for the computations is 350 in thex-direction and 30 in the
y-direction.
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FIG. 6. Comparison of experimental (thick lines) and numerical (thin lines) for the Kamedaet al.experiments.

Our goal is to compare the averaged two-dimensional results with the 1D two-phase
computations. We conserve the same number of cells (350) for 1-D computations. To
achieve the 1D multiphase computation, we need closure assumptions. We assume again
that the relaxation velocity coefficientλ tends to infinity. We also have to chose the function
m(ϕg). The functionm(ϕg) is closely related to the energy stored in the heavy fluid due
to inertial phenomena. Ifm(ϕg) is high, the relaxation pressure phenomenon is slow and
nonmonotone. Whenm(ϕg) is small, a fast pressure relaxation process occurs. It is not easy
to determine this function for compressible fluids and for the present geometry. However,
we will justify the hypothesis that for 2D geometry,m(ϕg)may be considered as a numerical
constant. Indeed, consider a cylinder of radiusR(t) in an infinite incompressible fluid. The
theory of dimensions shows that the kinetic energy of the fluid per unit length due to the

FIG. 7. Numerical experiment configuration for the shock–bubble interaction problem.
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FIG. 8. Density contours at 10 time instants for the shock-bubble interaction problem.

local radial motion of the bubble is then

qρ0
1πR2

(
d R

dt

)2

,

whereq is a constant to be determined. In contrast to the spherical case, the explicit value
of this constant is unknown. An estimation shows thatq ≈ 2 [25]. Hence, for the 2D case
in the presence ofN noninteracting cylinders the corresponding kinetic energy per unit
length is

Tc
f =

qρ0
1

πN

(
diϕg

dt

)2

,

whereϕg=πR2N is the volume fraction. This shows that for the plane geometry,m(ϕg)

does not depend onϕg and may be considered as a numerical parameter.
We have done a sensitivity analysis of the solution with respect to the parameterm. When

this parameter is large (say, greater than 1 ISU), the differences between the solutions of
the two models (1D and 2D) are quite strong. When this parameter is smaller than 1, the
two solutions agree better. When this function is set to 0.1 or less, the solution agrees quite
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FIG. 9. Comparison of the averaged 2D “reference” solution (bold lines) and 1D solution of two-phase model
(3.1) (thin lines) at instant 2.14 ms.
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FIG. 10. Comparison of the averaged 2D “reference” solution (bold lines) and 1D solution of two-phase
model (3.1) (thin lines) at instant 4.23 ms.
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well and is no longer sensitive to this parameter. When it tends to zero, the source terms
become stiff, more difficult to solve, but the solution is nearly indiscernible from that with
the parameter 0.1. Thus, we retain this value 0.1 for the numerical computations. We have
shown in Figs. 9 and 10 at two time instants, the 2D variables averaged over the cross
section at each pointx (bold lines). In the same figures the results are compared with the
1D multiphase model (3.1) (thin lines).

The comparison of the two solutions is shown at time 2.14 ms (Fig. 9) and 4.23 ms
(Fig. 10). On the pressure graph of Fig. 9 the shock wave has reached the bubble and is
strongly modified by the interaction. If the bubble was absent the pressure jump would be of
5 atm, where it is 4 atm. The main rarefaction wave travels into the high-pressure chamber
and is not sensitive to what occurs in the low-pressure chamber. It is important to note the
apparition of a secondary rarefaction wave facing left in the direction of the high-pressure
chamber. This rarefaction wave is due to the “bubble” volume compression. Instants later,
this wave train is quasi-stationary.

After the interaction with the bubble, the shock wave goes to the pressure value close to
the one it would have if the bubble was absent (Fig. 10). More interesting is the pressure
oscillation behind the shock front. Its location corresponds perfectly to the bubble posi-
tion. This pressure decrease is certainly due to the presence of a strong vortex inside the
bubble. This indicates that the rotation will be an important phenomenon to consider in
the future. The graphs of density and velocity confirm the previous observation concerning
pressure behavior.

Comparisons between 2D and 1D calculations show that:

• The main features of the flow are quantitatively preserved by 1D model (3.1) (correct
shock wave speed and jumps, main and secondary rarefaction waves),
• The bubble velocity is slightly higher than the velocity of the center of mass obtained

by the 1D model (density graph),
• The rotation effects, related to the presence of a vortex inside the bubble, need to be

considered in the 1D model.

Even if the agreement is not perfect between the two simulations, these results are very
encouraging.

6. CONCLUSION

Compared with existing models, model (3.1) presents important improvements:

• The model takes into account two macroscopic velocities and one microscopic
velocity.
• The model does not suppose that the volume fractions are small.
• Compressibility of each phase is taken into account as well as temperature nonequi-

librium.

Interesting features of this model are:

• For a particular case of bubbly liquids, the model is hyperbolic apart from a set of
parameters of the zero measure. Its eigenvalues are given explicitly. In the general case, a
sufficient criterion is proposed: the convexity of the energy implies the hyperbolicity.
• The mathematical structure of the model is very clear. The reason for this clear structure

is the use of the Hamilton principle of stationary action and a procedure that is not based
on Lagrange multipliers.
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This last property is important for the derivation of numerical schemes. We have shown a
very simple adaptation of the scheme proposed by Saurel and Abgrall [36].

The new multiphase model has been validated by using experimental data and exact
solutions. The next stage will be to take into account the rotation in order to describe all
possible types of internal nonequilibrium.
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problèmesà interfaces entre fluides compressibles en pr´esence de transfert de chaleur,Int. J. Heat Mass Trans.,
in press.

30. R. I. Nigmatulin,Dynamics of Multiphase Media(Hemisphere, Washington, DC/New York, 1991).

31. C. Pauchon and P. Smereka, Momentum interactions in dispersed flow: an averaging and variational approach,
Int. J. Multiphase Flow18(1), 65 (1992).

32. S. L. Passman, J. W. Nunziato, and E. K. Walsh, A theory of multiphase mixture. InRational Thermodynamics,
edited by C. Truesdell. (McGraw-Hill, New York, 1984), App. 5c, pp. 286–325.

33. M. S. Plesset and A. Prosperetti, Bubble dynamics and cavitation,Ann. Rev. Fluid Mech.9, 145 (1977).

34. Y. Rocard,Thermodynamique(Masson, Paris, 1952).

35. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows,SIAM J. Sci. Comput.21(3),
1115 (1999).

36. R. Saurel and R. Abgrall, A multiphase Godunov method for multifluid and multiphase flows,J. Comput.
Phys.150, 425 (1999).

37. L. I. Sedov,Mécanique des milieux continus(Mir, Moscow, 1975).

38. R. L. Seliger, and G. B. Whitham, Variational principles in continuum mechanics,Proc. Roy. Soc. London A
305, 1 (1968).

39. D. Serre, Sur le principe variationnel des ´equations de la m´ecanique des fluides parfaits,Math. Model. Num.
Anal.27(6), 739 (1993).

40. J. Serrin,Encyclopedia of Physics, edited by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. VIII/1.

41. K. M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems,J. Comput.
Phys.142, 208 (1998).

42. H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods,J. Comput. Phys.56, 363 (1984).

43. G. Strang, On the construction and comparison of difference schemes,SIAM J. Num. Anal.5(3), 506 (1968).

44. B. van Leer, Towards the ultimate conservative scheme V. A second order sequel to Godunov’s scheme,
J. Comput. Phys.32, 101 (1979).

45. L. van Wijngaarden. On the equations of motion for mixtures of liquid and gas bubbles,J. Fluid Mech.33,
465 (1968).

46. G. B. Wallis, On Geurst’s equations for inertial coupling in two-phase flow, inTwo-Phase Flows and Waves,
(Springer-Verlag, 1990), pp. 150–164.


	INTRODUCTION
	1. GENERAL APPROACH BASED ON HAMILTON’S PRINCIPLE OF STATIONARY ACTION
	2. APPLICATION TO BUBBLY FLUIDS (COMPRESSIBLE MIXTURES WITH MICRO-INERTIA)
	3. DISSIPATIVE MODEL
	4. NUMERICAL METHODS
	5. TEST PROBLEMS
	FIG. 1.
	FIG. 2.
	TABLE I
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 5.—Continued
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

