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A new model with full coupling between micro- and macroscale motion is de-
veloped for compressible multiphase mixtures. The equations of motion and the
coupling microstructural equation (an analogue of the Rayleigh—Lamb equation)
are obtained by using the Hamilton principle of stationary action. In the particular
case of bubbly fluids, the resulting model contains eight partial differential equations
(one-dimensional case) and is unconditionally hyperbolic. The equations are solved
numerically by an adapted Godunov method. The model and methods are validated
for two very different test problems. The first one consists of a wave propagating in a
liquid containing a small quantity of gas bubbles. Computed oscillating shock waves
fit perfectly the experimental data. Then the one-dimensional multiphase model is
used as a reduction tool for the multidimensional interaction of a shock wave with a
large bubble. Good agreement is again obtainegl 2002 Eisevier Science

Key Wordsmultiphase flows; nonconservative hyperbolic equations; shock waves;
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INTRODUCTION

A typical example of a fluid with micro-inertia is a fluid containing gas bubbles. Since tf
pioneering works of lordansky [21], Kogarko [26], and van Wijngaarden [45], a number
mathematical models of bubbly fluids have been proposed. At least two essentially differ
methods were used to derive the governing equations. The first is based on averagir
the local instantaneous conservation laws; see [7, 22, 30], among others. The seconc
variational approach, uses Hamilton’s principle of stationary action; see [3, 4, 8, 13, 14] ¢
others. The advantage of the variational method is that the knowledge of only one sc
function written in terms of the average variables, the Lagrangian of the system, allows

326

0021-9991/02 $35.00
(© 2002 Elsevier Science
All rights reserved.



TWO-PHASE COMPRESSIBLE FLOWS 327

to obtain a closed system of governing equations. However, it is not an easy task to fin
explicit form of the Lagrangian in terms of the average variables. To do so, a numbel
hypotheses should be developed.

By using the variational approach, Berdichevsky [4] and Bedford and Drumheller |
obtained the two-fluid equations in the case of barotropic components. Geurst [13,
considered the case when one of the components is incompressible. By using the Ham
principle, he obtained the governing equations and studied their hyperbolicity. Paucl
and Smereka [31] compared the averaging and the variational approach in the cas
incompressible dispersed flows. They found that in the dilute limit, the equations of moti
obtained by both methods are the same. In the one-dimensional case, they proposed ac
of hyperbolicity of the governing equations. In all these papers, the method of Lagra
multipliers was used to take into account the constraints expressing the conservation of 1
and the volume fraction constraint (the sum of the volume fractions must equal to one]
different approach was used by Gavrilyetal.[11], Gavrilyuk and Gouin [12], and Gouin
and Gavrilyuk [19] for the case in which one of the components is incompressible.

They integrated differential constraints in Lagrange coordinates and found the va
tion of Hamilton’s action directly in terms of virtual displacements. This permits one f
find simultaneously the governing equations (which do not form a system of conservai
laws) and a complete set of Rankine—Hugoniot conditions. The fact that the knowle
of the Lagrangian of the system gives automatically weak formulation of the governi
equations is well known for one-component flows; see [18, 37, 39] and others. A sim
criteria of hyperbolicity was also proposed: the convexity of the internal energy provic
the hyperbolicity of the governing equations.

In this paper we extend the approach “without Lagrange multipliers” to the case
dispersed flow of two compressible components when each of the components may |
its own temperature. This case is very important for a variety of applications: Richtmyz
Meshkov instability, deflagration-to-detonation transition in porous energetic materials, ¢
Among the models describing an immiscible mixture of two compressible fluids, the mot
of Baer and Nunziato [2] (henceforth referred to as the BN model) has to be mention
A variant of the BN model has also been proposed by Saurel and Abgrall [36]. The E
model consists of the mass conservation laws for each component and nonconserv
momentum and energy equations. This model is closed by a transport equation for
volume concentratiorp, which is an independent variable in the case of compressib
fluids. The model is hyperbolic unlike the one based on the assumption of “equal press
(see, for example, a discussion on the “equal pressure” model in Stewart and Wendroff [4
However, the BN model should be generalized in order to describe correctly phenom
with inertia effects (for example, the flow features being exhibited during the shock we
propagation in bubbly fluids).

To obtain a set of governing equations describing the phenomena with internal inet
we use an extended Hamilton’s principle with a Lagrangian which is not limited to tt
case of small volume fraction of gas bubbles. The system is closed by a second-o
differential equation fop obtained by varying the Hamilton action with respecptd his
equation is an analogue of the Rayleigh—Lamb equation describing the bubble pulsat
in an incompressible fluid; see [27, 33] and others. We prove the sufficient criterion
hyperbolicity of the system: it is hyperbolic if the total energy is convex. The model
specified for the case when the added mass term is negligible compared with the in
term. In contrast to the BN model, new terms related to the inertia effects come also into
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momentum and energy equations for the continuous phase. The governing equation:
presented in a form suitable for numerical calculations. In particular, the equation for
volume concentration can be rewritten in terms of the Riemann invariants. For this syst
we can prove the unconditional hyperbolicity: the equations are hyperbolic apart from a
of parameters of the zero measure. Finally, dissipative algebraic terms compatible with
second law of thermodynamics are introduced in the model.

A numerical method proposed by Saurel and Abgrall [36] based on the Godunov metl
(1979) is then adapted to this model and provides an efficient resolution scheme. °
ability of the model to solve correctly various physical problems is demonstrated for t
two following cases:

o the shock wave propagation in a fluid containing small gas bubbles (bubbly fluid),
o the shock wave interaction with the material interfaces.

In the first case, a very good agreement between numerical results and experime
results of Kamedat al.[23] is demonstrated. In the second case, the one-dimensional tw
fluid model was used as a reduction tool for the two-dimensional problem of interaction
a shock wave with a large bubble. Good agreement between the 1D and the average
results is again obtained.

1. GENERAL APPROACH BASED ON HAMILTON'S PRINCIPLE
OF STATIONARY ACTION

The Lagrangian formulation of classical mechanics is based on the Hamilton variatio
principle. This principle states that the real motion of a system is the extremal of the Hamil
action in a class of trajectories joining two fixed points in coordinate space. The Hamilt
action is defined as an integral of the Lagrangian over time. In general, the Lagrang
of the system is the difference between kinetic and potential energies. Formulation of
Hamilton principle for the continuum mechanics, which is an infinite-dimensional syste
can be found in Serrin [40], Lin [28], Seliger and Whitham [38], Sedov [37], and other
An extension of the Hamilton principle for the two-fluid hydrodynamics is formulated il
Berdichevsky [4], Bedford and Drumheller [3], Geurst [13, 14], Pauchon and Smereka [3
etc. In this section we extend the variational approach to the case of two nonbarotrc
compressible components.

1.1. Basic Notations

We consider a mixture of two immiscible components. Ea¢h constituent has its own
averaged characteristics: the local velocity the local density?, the partial density,,
the volume fractionp,, the local entropy per unit masg, the local internal energy per
unit masse,, (pg, ne), and the local temperatutg, « = 1, 2. The partial densitieg, are
defined by the formulae

Pa = %tpg- (11)

They obey the mass conservation law

Tt () = O (12)



TWO-PHASE COMPRESSIBLE FLOWS 329

For dissipation-free motions the local entropies conserve along the trajectories

dq

—ne =0 1.3
at” (1.3)
with

q_9 v

dt ot aV

The partial volume entropieS, defined by the formulae
Sx = Palla (14)
satisfy for continuous motions the entropy conservation law
d .
o S+ dv(Su) =0. (1.5)
We suppose that the volume fractianssatisfy the saturation condition

pr+e2=1 (1.6)

We shall use the subscript “1” and “2” for the continuous and dispersed phase, respecti
and shall often set:

p2=¢, ;pp=1—09. .7)
We also suppose that the Gibbs identity for each component is satisfied
1
0,01y = dey + pod (—0> (1.8)
Pa
Here p, (0, n,) are local average pressures.

1.2. Total Energy of the System

To use the Hamilton principle of stationary action, we need an expression of the tc
energy of mixture. We propose to take the total energy per unit volume in the form:

. Z ot (%—f) +Z M(pg,_)

Do Puo
(@) 2 3)
k_ , d )
+ (p1+pz)e(w)+§|w| +§|u2_ul| . (1.9)
4 5) (6)

In the analysis that follows in this section, we shall not use this particular form of the to
energy to derive the governing equations. They will be derived in the general case. Howe
todo numerical calculations, this explicit expression will be needed in the following sectiol
Let us precisely define each term in (1.9):
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(1) represents the kinetic energy of translational motion;
(2) is the pulsation kinetic energy,
di 9
a = ﬁ +u Vv
(the subscript i” means “interface”); the expression for the interface velocityshould
be givena priori. The choice ofu; is very important because it defines the structure o
governing equations (see a discussion at the end of Section 2).

(3) is the internal energy per unit volume;

(4) corresponds tothe potential energy related to the internal structure (the “configura
energy”; Passmaet al.[32]). The functione should be givera priori;

(5) takesintoaccountthe energy due to the macroscopic nonhomogeneity of the mixt
The volume fractiorp plays the role of order parameter as in the Cahn—Hillard approac
(1957);

(6) is the kinetic energy related to the added mass effect.

In a particular case of dilute suspension of gas bubbles of the same size, the follow
classical expressions for the coefficiemt&ndd could be given:

~ pr( 3 23 -1/3 ~ 0%
m~ 3(@) o Al
Here N is the number of bubbles per unit volume which is supposed to be constant. T
is a quite good approximation for the problems which will be considered in Section 5. T
formulae form andd are justified as follows. Consider the bubble of radR() moving
with the velocityu, in an incompressible perfect fluid having the velocityat infinity. The
kinetic energy of the fluid resulting from the relative motion of the bubble and its radi
pulsations is (see, for example, Lamb, [27])

7R3 [ (dR\? 2 )
T = 4 — —|ux —u .
f 5 ((dt) +3|2 1|)

Then for a dilute bubbly fluid, when we neglect the bubble interaction, the kinetic ener
T¢ of the fluid per unit volume in the presenceNfbubbles in the continuum limit (when
all the unknown function®, uy, u, become functions aft, x)) will be

7 R3pON dR\2 2
Te=""T (4 2= Zluz — uq)? ).
AL ((dt)+3|uz ull>

The definition of the volume fractiop, = ¢ = %n R3N permits us to rewrite the final
expression for the volume kinetic energy in the form

m(p) (dig\* d(p) 2
Te = /(2% i, —
f > (dt) + > [uz — ug|,

with m(¢) andd(¢) defined above. This formula is a good approximation even for the ca;
of compressible fluid component. In the following, we choose

g _a
dt  dt
(see the discussion at the end of Section 2).
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The expression for the capillary term (5) could be given as follows. We take the capille
energy in the forne|V p|?/2, wherep is the average density= p; + p», andc = constis
the capillary coefficient[34]. By supposing thatthe average local densities are approxima
constants, we gefVp|2/2~ c(p — p9)?|Vp|2/2. Hence,

~ (o = )2

1.3. Lagrangian of the System

The Lagrangian of the system is taken in the usual farea T — U, whereT is the
kinetic energy and) is the potential energy. Definition (1.9) of the total energy allows u
to separatde into the kinetic and the potential energy

T=Zpa > +§|U2—U1|2,

a=

|ua|2 m di90
2 +2<dt
(1.10)

2

0 k

U= § pa8a<¢a7r)a> + pe(p) + EIWIZ.
a=1 o

If the translational derivative

d;

dt
is Galilean invariant, this form of the Lagrangian guarantees Galilean invariance of
governing equations. The variablag and n, are not very convenient for calculations.

We introduce new variables: the partial momentum of each compgpento, u, and the
partial entropyS,. Consider the Lagrangian in a general form

. d
L=L (11,12, p1. P2, S, S, @, 87(:)’ V(,D). (1.112)

We shall see later that the total energy (1.9) is the Legendre transformation of
Z 9L, ¢ AL
1.4. Virtual Motions and Variation of Dependent Variables

Let X, be Lagrangian coordinates@fth component. The motion of the mixture is given
by two smooth maps = ¢, (X,, t). Let 11, A, be real numbers in the vicinity of zero. Let
us consider two families of virtual motions= ®,(X,, t, A,) such that®,(X,,t,0) =
p, (X4, ). The virtual displacements corresponding to each family are defined by

0P,
Ca == (Xav t» )\a) .
0Ay hu=0

The virtual displacement$, are defined as functions of the Lagrangian coordinates. |
the following we consider them as functions of Eulerian coordinates by using the inve
mapX, = ¢, 1(x, t). The variations of the dependent variables for fixed values of Euleri
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coordinates, corresponding to each family of virtual motions, are given by the formul
(see for details Gavrilyukt al.[11], Gavrilyuk and Gouin [12]):

8o = _div(paCa) (112)
. a L .

Sy = ﬁ(pactx) +div(je ® ¢4 — €4 ® ) (1.13)

5.5 = —dV(S.C,). (1.14)

Here the divergence of a linear transformatiis defined as followsdiv(Ah) = div(A)h
for any constant vectdr. In particular,

. ) ob
div@a® b) = bdiva+ 8_xa

for any vector fielda andb.

The two familiesx = ®,(X,,t, A,) are independent. They do not change the corre
sponding volume fraction, which is an internal parameter of the mixture. The variatit
of the Lagrangian through each family gives the equations of motion of each compone
Finally, we need a third independent family that permits us to vary only the volume fracti
@. It can be chosen in the form = ¢(x, t, ). The other parameters of the mixture are
unchanged. The variation of the volume fractipfor this family will be denoted by:

99Xt A)

5
¢ o

A:O.
1.5. Euler-Lagrange Equations

Let B x [t;, t;] be a domain in the space—time. The Hamilton action

t2
az/dt/de
t B

submitted to the three one-parameter families becomes the function ef= 1, 2 or A,
respectively. We denote:

B da
T da,

da
, =12 and fa=—

8@
h=0 dx

A=0

The equalities,a = 0 andsa = 0 give the momentum equation for each component, an
the microstructural equation for the volume fractigrrespectively. We shall suppose that
the variationg;, andég vanish on the boundag(B x [t1, t;]). For the families®,, the
corresponding variations of the Hamilton action are

tz
oL oL oL
Spa= [ dt | dX< —8,j0 + — 68400 + — 64 . 1.15
/ / {aja S PRI TS S’} (1.19)
1 B
Let us denote
oL oL oL
Ky =— Op=——0. (1.16)

TP 3pa 3S,
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The sign “minus” in the definition of temperatufig is chosen in accordance with Gibbs
identity (1.8). Taking into account definitions (1.16) and formulae (1.12)—(1.14), we ¢
from (1.15):

tz

5,8 = / dt/dx{Ka (aat(paca) +divie ® ¢, — ¢, ®ja))

t B

— Rudiv(paC,) + GadiV(SICa)}~

Since the virtual displacemends vanish on the boundad(B x [t, t2]), we obtain after
using the Gauss—Green—Ostrogradsky theorem

t

(Saa.: /dt/dx{_paca% — (Ca(%)ja _jo(a;)()(a)Cﬂt)

t1 B

+paCaVRa - Stcavea}~

It can be written as
oK, .
Sea = /dt/dx —p(ZW —r10tKy X jo + 0o VRy — S VO, ¢¢,-
B

Hence, the momentum equations are

K 4 .
Pag + 10K o = pu VR + §V0 =0, a =12 (1.17)

Now, let us calculate the variation corresponding to the third family

t
oL L [dg L
da= [dt [ dXS —68p+ —b — | + ——8(V .
/ B/ {Bw R TEr (at> 1) "’)}
1

Since

dp\ _ 90¢) .
5(E> =200 5w = Vi),

we get by integration by parts and by using the fact Sigavanishes on the boundary the
following equation forp:

L s () ) 0
S dp  At\a(%¥) (Vo)

The microstructural equation (1.18) is the analogue of the Rayleigh—Lamb equation
scribing the bubble which expands and contracts in surrounding liquid; see [27, 33]
others.
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1.6. Conservation Laws and Hyperbolicity Criterion

The Noether theorem says that the governing equations (1.2), (1.5), (1.17), and (1
admit the conservation of total momentum and total energy corresponding to the invaria
of the Lagrangian with respect to space-and-time shifts. These conservation laws cal
obtained by straightforward calculations. The total momentum conservation law is

at<2pa «=V 8?;)>+dIV<i(ja®Ka—<jaKa+paa +S’8&)>

a=1
_ L _0
(Vo) -

Herel is the identity tensor. The total energy conservation law is

aL (& _ dp oL
8t (Zja o 8t8()—L>+d|V<Z_RaJa+SxeaUa+ata(vw))zo.

a=1

In general, there are no additional conservation laws in terms of dependent variables. He
the governing equations cannot be written in divergence form. This does not allow us
obtain a sufficient number of Rankine—Hugoniot conditions by using the classical appro
based on the divergence form of equations. In the papers by Gaveityi{11] and Gouin
and Gavrilyuk [19], it was shown (in the case when one of the phases is incompressil
that Hamilton's principle gives a sufficient set of Rankine—Hugoniot conditions associat
with the nonconservative form of governing equations. The aim of the present paper d
not include the generalization of this result to the case of compressible mixtures. In 1
section we focus on the question of hyperbolicity.

Of course, we are not able to calculate the eigenvalues in explicit form for the gene
case. To prove the hyperbolicity, the only possibility is to rewrite governing equations
symmetric form of Friedrichs. But the method, which permits us to rewrite automatical
governing equations in symmetric form, is also based on the divergence form of the g
erning equations (Godunov [16] and Friedrichs and Lax [10]). This is why we conside
restrictive class opotentialflows, which admits a divergence form. Of course this diver-
gence form does not necessarily imply physical shock conditions.

The following definition of potential flows is given in Gavrilyw al.[11] and Gavrilyuk
and Gouin [12]. It generalizes the definition of potential flows proposed by Geurst [13] (s
also Wallis [46]) for a particular case of a mixture with one incompressible component.

DEFINITION. The flow of thea-th component is callegotentialif rotK, =0, , =
const

Obviously, all the one-dimensional isentropic flows are potential. The equations of |
tential motions are

ad oL d oL oL oL
—Pe+divj, =0, K —V( >_0, ey +d|V<)— =
at 00q at a(d—f) (Vo) ap

(1.19)
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Here

. ap
L=L s Jar @ > V
<)0 Jar @ at (,0)

is the Lagrangian and

L
Ka = a—
o
System (1.19) is a system of conservation laws, which admits the energy conservation
with the energy density

2

2

oL, dp oL . 8¢ oL

Ej— L= Ko+ =~ L. (1.20)
=1 8 at 8(%7?) a=1 ot a(%)

It is possible to give a sufficient criterion of hyperbolicity of system (1.19) by using tt
Godunov—Friedrichs—Lax approach (Godunov [16] and Friedrichs and Lax [10]). For tf
we have to rewrite the last equation of (1.19) as a conservative system of two first-or
quasi-linear equations. Let

W= V.

We consider the enerdy as function of the variables,, K., ¢, b andw. Formula (1.20)
implies

9E oL 8E . 9E 9L 8E 9L 3¢ OE

Ou  Opa’ Ky ' 3¢ d¢’ ow  ow 9t ab’

o

In these variables the equations of motion are written as

ot
0K o dE
Vi—) =0,
at 00q
dp OE
- = 1.21
at b’ (1.21)
ab dE IE 0
at aw dp

ow_ (9B _
at ab )

If we add the following constraint on the initial conditiommsK , [;—o =0, (W — V¢)|t—0 =0,
the system (1.21) will be equivalent to (1.19). We can now formulate the following theore
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THEOREM 1. If the energy Ep,, K., ¢, b, w) defined by(1.20) is convex the system
(1.21) is hyperbolic. Moreoverthe system can be rewritten as a symmetric t-hyperboli
system in the sense of Friedrichs.

The proof of the theorem is a direct application of the result of Godunov—Friedrichs—L
to the system (1.21). This sufficient criterion is quite restrictive. In particular, it cannot |
applied if the pulsation energy is taken in the form (2) and the capillary energy (5) is eq
to zero (see the expression of the total energy (1.9)). Indeed, without the capillary ene

the term
m(de)*
2\ dt

is degenerate with respecti@ndw. However, other possible forms of the pulsation energy
may exist, especially for not-small volume fractions of dispersed phase. For example,
pulsation energy can be taken in the form

2 my (dep\?
> 2< it ) . (1.22)

a=1

This energy is convex with respect bbandw if the velocitiesu,, are different. When
Theorem 1 cannot be applied, direct calculations may be done for a given form of the t
energy of the system. We shall do it in the next section for the case of bubbly fluids.

2. APPLICATION TO BUBBLY FLUIDS (COMPRESSIBLE MIXTURES
WITH MICRO-INERTIA)

2.1. Simplified Form of the Governing Equations

We neglect capillary term (5) and virtual kinetic energy (6) in the expression of tot
energy (1.9). The simplified Lagrangian is

2 (fjal2  m(dp)? -
T O
a=1

= 20a

Heredy, is the Kronecker symbol. We recall that (see formulae (1.4), (1.6), and (1.7))

Pu S
Y =¢2, Y11= 1_§09 80!(1000(9 Ua) = 80{<a >7
Do Pa
-t d1—8+uV—8+jlv
P = p17T P2, dt ot 1 =5 o

The index “2” will denote the gas phase (bubbles) and “1” the liquid phase. In (2.1) v
have supposed that the interface velocitys equal to the velocity of the liquid phaseg.
This hypothesis means that the pulsation energy

m dl(p 2
2\ dt
is concentrated essentially in the liquid phase. This is eventually valid for small volur

fractions of bubbles. However, for large concentrations this choice may be not the best. N
ertheless, we accept this hypothesis, which turns out to be quite good in practice. To simy
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the final formulae we also suppose tmat= m(¢). In generalm = m(y, p1, p2, S, S,
|uz — uy]). This parameter represents the mass of the fluid involved into the motion duri
the bubble pulsations.

First, we shall give an explicit form of the equations of motion (1.17). We get from (2.
the following expressions:

aL dip Vo

Kaziz o ——30 5

aJa * dt r1 -

oL |UD[|2 d1§0 u1Vo ad

=3 =~ —m{ —- — 7 (Oaba) — €
Ry o0 > ( at ) o 0= o (Puta) — €(p)

o L _ 0 o)
o — 881 - BSX pﬁt al-

Hence, Eq. (1.17) is

dKe [9Ko\ " ol (dip)\ uVe D (pete) — &)
o - a = Pa - - s — 77— (Pala) —
p dt X ] p 2 dt 01 Lo 00q p ¢

0

The Gibbs identity (1.8) is equivalent to the identiyp,e,) = 6,dS, + oy —
pP.de,, Where

+5(g wen) =0

Po P

o

Mo = Eq + — O Na

is the Gibbs potential. Itimplies th& d6,, + p,du, = . dp,. Hence S, VO, + oo Vite =
vV Pe- We obtain then the momentum equations in the form

d,K, /oK, \". N auy \ " eV dev
IOOl dt ax Ja 8X Ja (pll pO( pO( d(p (p

d u v
+ o,V (m( 22V 225 — 0.
dt / p
For o = 2 we haveK, = u,, §;2 = 0 and hence the momentum equation for the secon
component is

dp2U2
ot

. de
+ div(pouz ® Uz + ool ) = (pz—/)zd(pz)vﬁl’- (2.2)

Fora = 1 we get

dip V
Ki=up+me ¥
dt pp

and the momentum equation will be

0p1K1

_ de dig (dup\ "
g K = — — |Vo—-—m—| —= ) Vo.
+div(pru1 ® K1 + pro1l) <p1 + pld(p) ¢ dt < ax > ¢
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Or, in terms of the velocity;

diug th [ Chy 1 tho _ (the de
e R R el (22— == vg.
P T (p1<.01)+,01dt <m at m)V(P‘l—m dt T p1+,01d¢ @

2.3)

Finally, straightforward calculations give the microstructural equation (1.18) for tt
Lagrangian (2.1) in the following condensed form:

di(mip) (dip)\*\ _ de) dip 1
dt\ 202 \at ) ) “\PP7 P T Pqg ) at o2

If we put

the microstructural equation can be rewritten as the first-order quasi-linear system:

o _ o1
dt =~ Jm
v/m ; (2.4)
dl_r_ p2_p1_/0£
dt pry/m

The variabler is an analogue of the bubble radial velocity in the Rayleigh—Lamb equatic
(see (5.1)). The variables T are the Riemann invariants corresponding to the velocity fiels
u;. They admit the following divergence form:

3 . Tp?

— div Up)) = —

P (p19) + div(p1pU7) Jm
P2 — p1— Pg—j

Jm

Equations (2.4), or their divergence form (2.5), allow us to rewrite the momentum equat
(2.3) for the first component in the following form:

diuq m [/ dip 2 de de
P1 at + <p1<ﬂ1+ > ( at ) P2 '02d<p Y1 P2 /Ozd(p ¢. (2.6)

Equations (2.2), (2.4), and (2.6) supplemented by the equations of conservation of mass
entropy (1.2) and (1.5), form a closed system of governing equations expressed in terr
usual physical variables. We present them together to simplify the study of hyperbolic
They are

(2.5)

B .
5(/}11) + div(pituy) =

0 .
% + div(pzuz) =0

o1
% + div(pauy) = 0

douy de
P2—— +V(P2g2) = | P2— p2—— | Vo = piVe
dt de
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dis g +ﬁ L
o1 dt P1o1 5 = | P2 pzd(p p1=—PiVe
the _ o1
dt  /m
thr P2~ pl—p(%j
dt p1/M
dan2
=~ _0
dt
a1y
— =0. 2.7
T 2.7)
Here the pressure
_ de
Pi = P2 pzd(p

may be interpreted as the average pressure on the interface separating the two phase

2.2. Hyperbolicity

We will check now the hyperbolicity of system (2.7). For the sake of simplicity wi
consider the one-dimensional case. t,gbe the sound velocity af-th component. We get

Vpr=—5 —Vn=c¢—+——=Vo+ —Vn.
ap? o Lo 1 on

apL [V 9 v c?p? 9
. |01< P1 ,0; chl) n P1 2 VP1 101 P1
¥1 ?1

The same for the second component

op2 (Vo2 p2 P2 V2 2p3 ap2
szzao<—2V</7 +37V772=C%7_2V¢+37V772-
P2\ P2 2 12 p2 ®2 12

Let v = (p2, p1, Uz, U1, @, T, 2, 1) be the vector of unknown variables of dimension
eight (one-dimensional case). System (2.7) can be rewritten in the form

ov ov
— 4+ Av)— =T,
atjL ()ax

where

de T
f= (0, 0,0,0, tp1/+/m, (pz —p1— P@)/(Plx/m),(l 0)
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and the matrixA is given as

W 0 p O 0 ) 0
0 Uy 0 pm 0 0 0 0
% 0 U, O —C§p3:2pz—pi 0 g%%

A=| O % +72 0 up 7_p1+§‘1+cipf p1T 0 g%%
0 0 0 O Uy 0 0 0
0 0 0O O 0 Uy 0 0
0 0 0O O 0 0 (173 0
0 0 0O O 0 0 0 Uy

The eigenvalues of are given by

A123 = U1

Ag = Uz

As6 = Uy & 1/C? + py72

A78 = Uz £ Co.

(2.8)

All the eigenvalues are real. The multiple eigenvalues correspond to the propagatior
entropy waves and concentration waves. It is quite easy to show that the right eigeny
tors of A constitute a basis of the spaB8, if (u, — u;)? # ¢ (for details see Embid and

Baer [9] who studied a similar question). Hence, we have proved the followir
theorem:

THEOREM2. Systen(2.7)is hyperbolicif (u, — u;)? # c3. Its eigenvalues are calcu-
lated in explicit form.

The last two equations of (2.7) expressing the entropy conservation are not convenien
numerical computations. We have to transform them into the energy equations. The en
equations can be obtained by using the Gibbs identity (1.8) that gives, with the mass
the entropy equations, the following identity:

9 lial? e Pa
At aca d a o o
3t(p8+2pa>+lv<1(2 +8+ppa

daua daﬁ”ot
=ua<pa dt +V(pa§0a)) — Pu dt -

Using the momentum equations (2.2) and (2.6) and Eq. (2.4), we can transform the enti
equations into the equivalent equations for the energy

9 uy|? _ uy|?
D (ol ea+ e+ 25N 4 div ppun(er + e+ 1925 4 p, 22
ot 2 2 P2

de\ d¢y g
— Yl _p— 2.
(pz pzd(p) at & ot (2.9)
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B] 2 Jugl? . us)?
| P, 81+e+p1—+£ +div( p1uy 81+(:-'-|-,01T2"i‘ﬂ‘1‘plﬂ
ot 2 2 2 o1

de\ d¢1 ag
=— —pp— | — = p—. 2.10
<p2 pzdw) ot Pi ot ( )

System (2.7) where the entropy equations is replaced by the energy equations (2.9)
(2.10), is reminiscent of the BN model (1986) (see also Kaeilal. [24], Saurel and
Abgrall [36], and Bdzilet al. [5]). The difference is the presence of “turbulent” terms in
the momentum and energy equations for the continuous phase and a different form of
equation for volume fraction. It is no more a transport equationgfobut a system of
two equations for the volume fraction and its velocity. The theory of Pas&nah[32]
postulates this microstructural equation (see also a discussion in &dall [5]). Here

a microstructural equation is explicitly obtained by using the variational approach.
implications on the other parts of the system are also obtained.

Another interesting point is the choice of the interface velogitand the average inter-
face pressurg;. For a given velocityy; the variational principle determines uniquely the
interface pressurp;. For example, for the bubbly fluid the choige= u; impliesp;, = po,
if we neglect the configuration energyy). In Baer and Nuziato (1986) the same asym-
metric duality takes place for the model describing deflagration-to-detonation transitior
granular materials.

Itis necessary to underline that the variational principle is very sensitive to the choice
the material derivative

d;
dt’
If we takeu; = uy, it places “turbulent” terms into the equations for the dispersed pha

(gas phase) and not into the equations for the continuous phase (liquid phase). In gel
situations, the choice of the “turbulent energy” in the form (1.22) would be preferable.

3. DISSIPATIVE MODEL

In our applications the “configuration energs(y) is neglected. In this case, the interface
pressurgy, = p; and the interface velocity, = u;. We consider a dissipative model for this
particular case. To take into account adrag force between liquid and gas, the bubble dam
and the external forcg, only minor modifications should be added into system (2.7). T
present the system in a form adopted already in Saurel and Abgrall [36] for numeri
calculations, we change the order in which the equations are written. The dissipative sy:s
used for numerical computations can be cast in the form:

tht  P2—P1— Py

dt ~ py/m
e _ o1
dt — /m
apz .
—— 4+ div(poup) =0
ot + div(poUy)

d .
ﬁ(pzuz) + div(poUz ® Uz + P22l ) = P2V + p20 + A(Uy — Up)
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0 .
a( (82+—| ;' )) +dIV<p2U2(82+—| 2| + Dz%))

01
——p (22 _uv s -
P2 (m Uz w) -+ AUz(ug — Up) + poU2g

ap1
— +div(pruy) =

at
0 . p372
a(plul) +div( p1u1 ® U1 + - + p1p1 | | | =—pP2Vo + p1g+ A(Uz — Uy)
d T uq|? 2
({5 ) (s 1)
=P (Tpﬁ - U1V</9> — AUg(up — Uz) + p1Usg. (3.1)

Here the termi(u; — uy) represents the Stokes type drag forceés a positive function
depending on the local characteristics of each componentparid the viscous force
responsible for bubble damping. The following classical expressipp s#ads for spherical
bubbles (see, for example, Plesset and Prosperetti [33]):

4/L|dR
Pu="RTar

Herey, is the liquid dynamic viscosityR is the bubble radius related to the gas volume
fraction ¢ and the bubble number density by the formulay = %n R3N. By supposing
thatN ~ constand by replacinq,‘it by % we can rewritep, in the form

Ao
P = 3y (3.2)

We will use formula (3.2) even in the case whigris not constant (weak variations). In
this case we should add the following equationiXar

oN
— +div(Nuy) = 0.
ot -+ div(Nuy)

System (3.1) takes into account mechanical and thermal disequilibrium (we do not supr
that the temperature of the phases are the same). But we do not add in our system relax
terms corresponding to the thermal disequilibrium.

Now, we have to verify the entropy inequality for system (3.1) (Passhah [32] and
Baer and Nunziato [2]):

Zpa htle (3.3)

Straightforward calculations show that

2
o1 Uy — Up)2
Z g n _)\(2 1) +r,01p,t

2P g T g Jmo;”
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Expression (3.2) ofp, guarantees that the second term is positive. Hence, the entro
inequality (3.3) is verified.

4. NUMERICAL METHODS

In order to deal with the applications involving compressible mixtures, we need two tyy
of numerical methods. The first one is a method able to solve new multiphase model (Z
The second method is used to solve the classical multidimensional Euler equations ir
presence of material interfaces, in order to provide reference solutions for the multiph
model.

4.1. Numerical Method for Multiphase Equations

In Saurel and Abgrall [36] a numerical method was proposed to resolve a honcon:
vative system describing multiphase flows. We note that the structure of the new mc
is close to the one proposed in Baer and Nunziato [2] and Saurel and Abgrall [36] (
BN-type model). To show this we rewrite system (3.1) in the one-dimensional case.
shall use the indices “I” and “g” for the local characteristics of the liquid and gas phas
Moreover, we drop the superscript “0” in the notations of the local densities. Hence, |
denote

Up=u, U=Ug @1=¢, @2=¢g5 pr=@p and pz = ggpq.

We introduce now the variable. When this variable is equal to zero, the BN-type mode
is recovered. When is equal to one, we get model (3.1). When the mass and heat trans
are negligible, the both models can be rewritten in the condensed form,

0 0

X 02X Z a0 L)

ot X (4.1)
U aF(U) '
— =HWU S ,U

Tt o ( ) 9+ Sa(x. ),

with:

X = kT, 99)",
U = (¢gpg, $gPgUg, 95PgEq N, p101. @roiti, ap EDT,
F = (¢gpgUg. ¢g0gU5 + ¢gPg, Ug(@gpgEg + ¢gPg), NUg,
o, @ + o p +r@mn)?/2 uep B +op + K(fﬂlplf)z/z))T
H = (0, pg. Pgti. 0.0, —pg, —pgu)" and Eg =g+ u3/2,
El=a+Ul/2+kopmt?/2,

The source vectorSa(x, U) andSg(x, U) read

P = pu TQ 0
apym N ym

]
Sa(x, U) = (K Py — + (L= K)p(pg — p.))



344 GAVRILYUK AND SAUREL

T
Se(x. U) = (o, 0gPgd + A(U| — Ug), —K Py %‘ + (L — ) pgre(Pg — P)
+)\.U| (U| - Ug)» Ov 09 @10 g - )\,(U| - ug)» Kpg T%l

.
— (1 =) Pgu(Pg— P) — AU (U — Ug)) .

The parametenr in the BN model controls the rate at which the phase pressures tend tow:
equilibrium. Inmodel (3.1), this parameter is absent. The corresponding equationis repla
by two quasi-linear equations describing the same tendency to equilibrium. The similal
between the two models permits us to use the same numerical approach as propos
Saurel and Abgrall [36].

The major idea of the method is that the difference scheme should conserve the f
uniform in pressure and velocity. This idea was proposed earlier by Abgrall [1], Shy
[41], and Saurel and Abgrall [35] for the Euler equations of compressible fluids and w
applied for the contact interface problems even in the case when the initial conditions w
not uniform in pressure and velocity. Then this idea was adapted in Saurel and Abg
[36] to the BN-type model in order to determine the numerical approximations of tf
nonconservative terms

d¢g
HWU)—
()ax

and a nonconservative equation fgy. In the model (4.1), a new variable appears.
We note that the pressure and velocity are uniform if and only if the source terms vz
ish. In particular, the pressure is uniform if and onlyrifis equal to zero. Hence, the
terms

HU) 2
aX

and the equations fog can be treated as in Saurel and Abgrall [36].

The hyperbolic solver is based on the second-order Godunov-type method follow
the MUSCL strategy [44]. The source teri®s andSg are treated by a standard splitting
procedure [43], which is not detailed here.

The predictor step is done by using the primitive variable formulation in order to satis
the uniformity condition. The primitive variables vector is definedMs= (t, ¢g, pg, Ug,

Py, A1, U, P, N)T. The primitive variable vector at timg and at pointx; is denoted
by W' and the associated slopes BW{. When the flow is uniform in velocity and
pressure, the slopes related to these variables are zero. The primitive variables a
cell center and on the right and left sides of the cell at the half time step are giv

by

W2 = W — At/2B(WP)SWR: WITLE . = W2 4 1725w
W2 = W2 128w,

Analogous notations are used for the variatiles
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Here B(W) is the Jacobian matrix of the system and is given by

u 0 0 0 0 0 0 0 O
0 u 0 0 0 0 0 0 O
0 0 0 u 1/pg O 0O 0 O
0 0 0 0 0 u ol 0 0
ot %—PITZ 0 O 0 wt> u 1/p O
0 0 0 O 0 0 pc& u O
0 0 0 N 0 0 0 0 ug

The sound speeds of the gas and liquid phases are denotgdibglc, respectively.
The unknown vector of conservative variables then updated by the modified Godunov

formula:

UMt =un — %(F(urjjﬁ_,urﬁ/ﬁg—F(U?ff/ﬁ_,u{‘ff/5+))+AtH(u”+1/2)A.

The conservative fluxes are obtained from the HLL solver [20]:
n+1/2 n+1/2
F(Ui+1/2 — Ui+1/2 +)
n41/2 n41/2 n41/2 n+1/2
$1/2F|+1/2 $+1/2F|+1/2 + + $1/2$1/2(Ui+1/2,+ - Ui+l/2,7) (4 2)

Strl/z - Si12

Nonconservative termid (U) - %9 are approximated by a formula consistent with the HLL
solver [36]:

2 n+1/2
Strl/z(pgwl/z - 311/2('094-1//24- _ $ 1/2(Pg| 1/2 - S_ 1/2¢g| 1//2,+

A= —
AX 311/2 3:1/2 3t1/2 3—1/2

The waves speedS™ and S~ in the HLL solver (4.2) are the maximum and minimum
eigenvalues of the Jacobian matBxwhich coincide of course with the eigenvalues of the
matrix A (see (2.8)). The wave speeds are given by

Shi2 = max(O, Ais1/2—, Atz +)s  Siyz = mkin(O, AKi+1/2,—5 Aki%1/2,4)-
The unknown vector of nonconservative variabiess then updated by the scheme,

HLL

At
Xer_l _ Xl B f((U|X),+1/2 (UIX)| “, + Xn+1/2( HLL HLL )) (4_3)

U1 — Uity

where(u;x){'t1;, is obtained from the HLL flux (4.2), while the velocity!! , is given by
we @i,
Uity =

0=
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Note that formula (4.3) is not the same as in Saurel and Abgrall [36]. This slight modificati
yields better convergence.

The conservative state variables at the cell boundary are defined again under HLL
proximation:

n+1/2 - n+1/2 n+1/2 n+1/2

HLL Un+1/2 Un+1/2 _ 311/2Ui+1/2,+ B S+1/2Ui+1/2,7 + Fi+1/2,7 — Ui+1/2+

i+1/2( i+1/2,—> i+1/2,+) S+ . .
+1/2 511/2

4.2. Numerical Method for the 2D Euler Equations in the Presence
of Contact Interfaces

In Section 5 we will show the comparison between 1D computations by using the m
tiphase model (3.1) and 2D numerical experiments simulating the interaction of a sh
wave with a bubble of different gas. The aim is to show that the 1D multiphase model i
reasonable reduction of the averaged 2D problem.

To obtain the 2D results we need to solve the Euler equations in a situation involvi
a 2D contact interface separating two gases. We recall here the basic ingredients of
method [1, 35, 41].

The dynamics of each pure material is governed by the Euler equations:

ap .
at +div(pu) =0

ag)—tu—i-div(pu@U—i- py=0 (4.9)

opE
% + div(pEu + pu) = 0.

This system is closed by the stiffened gas equation of state: (y — 1)ps —

¥ Poo With standard notations for unknowns. The parameters of the equation ofystate
and p, are different for each material and are discontinuous at the contact interfa
The method that follows is specific to this type of equation of state. Generalization
the method to the Mie—-Gruneisen—-type equation of state is done in Masbaii
[29].

In order to deal with very large deformations, we wish to solve these equations
using a Eulerian method. This poses the well-known problem of artificial diffusion ¢
contact discontinuities. At the contact interface, the density and internal energy is sme:
over several mesh points. Since the interface separates media with different equat
of state, the computation of pressure, sound speed, and all thermodynamic variable
critical.

The parameters of the equation of state are function of space andtime:(x, t)
andps = P (X, 1), X = (X, ¥)T. The method consists of a succession of one-dimension
sweeps along each direction [43] over a Cartesian mesh. Consider, for example, a
along thex-direction (the step along thedirection is analogous). The Euler system (4.4)
should be supplemented by several evolution equations [35]. First, two evolution equati
for the state parameters are necessary. Second, an evolution equation for the kinetic el
associated to thg-velocity component is necessary. Each one-dimensional step consist:
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the resolution of the system:

ow w

ot + U& =0
(4.5)

U | 9FU) 0

at ax

withU=(p, pu, pv, pE, pv?/2)T, F(U)=(pu, pu?+ p, puv, U(pE+ p), puv?/2)T and

wo (2 rPe
S \y-1y-1) "~
Resolution is based on a second-order Godunov scheme with the same type of prec

step under primitive variables formulation as in Section 4.1. The update of the unknc
variables is given by the formulae

At
+1 n+1/2
W= - AX (Ui*+1/2wi*+1/2 — U pwig)p + Wi (ui*+1/2 - Uil/z))
and
At
1 N2 L2 nt12 g ntl/2
urt =ui - B(F*(le/z,f’ Uiz y) = F (U Uhs L))

wherews, 1 ,, U, 1 5, andF* (U175 U2 ) are the state parameters, the velocity in

x-direction and the flux, respectively, obtained from the solution of the Riemann problem
system (4.5). The Riemann solver for this system is such that the extra variables i /2)

do not change across the right and left waves. This Riemann solver is an obvious exter
of a conventional exact Riemann solver for the Euler equations.

5. TEST PROBLEMS

Model (3.1) couples the microscale and macroscale motions in a unique set of hyperk
PDEs. The first test problem we are interested in will be to put into evidence an import
influence of the microscopic motion on the macroscopic one. We consider the shock w
propagation in a bubbly fluid and compare numerical results obtained by using a 1D mc
(3.1) with experimental ones. The second test problem examines the aptitude of model (
to restore averaged two-dimensional numerical results obtained for the 2D Euler equat
for the problem of shock—bubble interaction. This topic is close to the one examined
Glimm et al.[15].

5.1. Shock Wave Propagation in Bubbly Fluids

Interesting experimental and theoretical works on the shock wave propagation in but
fluids have been done for more than 30 years. Some old experimental works were suffe
because of a lack of accuracy in physical measurements and because of the preser
solute gases producing the creation of new bubbles.

The experimental results were also sensible to the initial bubble dispersion. Careful
periments have been recently done in Japan by Karaeala[23] using a liquid exempt of



348 GAVRILYUK AND SAUREL

Connection with a gas—gas

shock tube
Gas
Shock wave propagation
direction
Mixture
©) O
O @)
Low-velocity flow
©) @)
Pressure gauge
@ @
®) O
®) ©)
O O

Bubbles injectors

FIG. 1. Schematic representation of the bubbly shock tube.

solute gases. They preserved in their experiments a uniform bubble size-and-space dist
tion. The experimental apparatus consists of a vertical shock tube. The bubbles are inje
on the bottom of the tube and rise by natural and forced convection. A shock wave inter:
with the free surface, transmitting a compression wave into the mixture. The experimel
situation is shown in Fig 1. A typical record obtained with a pressure gauge placed into
liquid is shown in Fig. 2.

Figure 2 represents the difference between instantaneous pressure and hydrostatic
sure at a given position in the shock tube versus time. The strong coupling between w
dynamics and bubbles pulsation s clearly visible. The experimental conditions and phys
data are summarized in Table I.

5.1.1. Rayleigh—Lamb Test Problem

This first test is very basic and consists of the following. We consider a tube filled wi
a bubbly fluid. Both phases are uniform and initially at rest. Only a pressure differen
is present between the phases. Thus, each bubble must follow the behavior of an iso
bubble governed by the Rayleigh—Lamb equation [27]:

RR+3/2R* = (pg — p)/p- (5.1)
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FIG.2. Atypical pressure signal inside the shock tube filled by a bubbly fluid (courtesy of Professor Kame
University of Tokyo).
This equation is equivalent to (2.4) if we neglect the surface ensfiglyand substitute

0 4 3
p1 = P ~ const (ngrrRN

and

2/3
_m( 3 -1/3
mie) =3 <471N> g

The Rayleigh—Lamb equation is easy to solve by assumingpiteatd o, are constant and
the gas obeys the polytropic laywyR® = cst In order to compare the results obtained by
solving this equation with those obtained by model (3.1), it is necessary assume that:

e All space derivatives disappear. It is what occurs under uniform initial conditions.
e The liquid pressure remains constant. To fulfill this condition, the liquid pressure
imposed to be % 10° Pa instead of using the calculation with equation of state.

TABLE |
Experimental Conditions and Physical Data for the Bubbly Shock Tube

Liquid Silicone oil
Viscosity 0.00415 (Pas)
Surface tension 0.00208 (N/m)
Density 953 kg/m3
Sound speed at standard conditions 979 m/s
Stiffened gas equation of state parameters y =3,P, =304 1C Pa

Gas SF6

Specific heat ratio 1.09
Molar mass 146 g
Initial temperature 309 K
Initial bubble radius at the location of the pressure gauge 0.613 mm
Pressure gauge location with respect to the free surface 1.462 M

Final pressure jump due to shock wave compression 130.6 KPa
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FIG. 3. Comparison between the Rayleigh—Lamb solution and model (3.1) for a uniform bubbly mixture.

The corresponding results are shown in Fig. 3. The two curves and ODE and P
solutions are superimposed.

5.1.2. Kameda et al. [23] Test Problem

Due to the large dilution of the bubbles and of the high-density ratio between fluids, ot
low sliding between phases is allowed. For this situation it is reasonable to take an infir
velocity relaxation coefficientil(— +00). We will adopt for resolution the relaxation
procedure detailed in Saurel and Abgrall [36], rather than solving a stiff differential proble
Of course, the model can also be used for finite relaxation coefficient

Instead of simulating a total shock tube with the gas chamber, we consider the impac
a piston with velocity 0.427 m/s, corresponding to the overpressure of 130 KPa as in
Kamedaet al. [23] experiments, at the distance 1.462 m from the free surface (pressi
gauge location). Initial conditions in the tube are shown in Fig. 4 where the gravity effe
are visible. The numerical results are shown in Fig. 5 attimes 1.92 ms, 3.84 ms, and 5.76
The strong coupling between the macroscopic and microscopic motion (pulsations) is cle
visible.

The graphs of liquid pressure and mixture velocity clearly show the splitting of tf
initial signal into two waves: low and high-frequency waves. The velocity of the large
amplitude low-frequency wave (5 KHz) is 290 m/s and is close to the gas sound veloc
This is in perfect agreement with the experimental measurement (“about 300 m/s”). T
low-amplitude high-frequency wave (20-40 KHz) propagates at the velocity of 827 m
which is close to the liquid sound speed.

We conclude this paragraph by a validation with experimental results by Kaetedla
[23]. They recorded a pressure signal at a given point of space versus time. We compare
the experimental results shown in Fig. 6 with our numerical results. The number of ce
used in the computation is 2500. Experimental results are in bold lines, while numeri
ones are in thin lines.

Thefirstthree oscillations of large amplitude show a nearly perfectagreement. Onther
oscillations, the agreement is a little less accurate but is always inside the experimental ¢
bar of 15 KPa. The precursor wave, predicted by the model (3.1), was not mentioned in
experiments of Kamedet al.[23]. However, it was experimentally observed, for example
by Kedrinsky [25]. The present results are obtained without any empirical relations.
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Gas Volume Fraction
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FIG. 4. Initial conditions for the Kamedat al.[23] test problem.

5.2. Two-phase One-dimensional Model as a Reduction Tool
for Multidimensional Problems

We study the two-dimensional shock wave interaction with a light gas bubble (in fact
square cylinder) inside a heavy gas. For this configuration we compute a 2D “referen
solution of the Euler equations by using the numerical method described in Section -
We compare the numerical results obtained by using model (3.1) with the averaged
“reference” solution.

The physical parameters of the configuration considered are the following. The cel
of the mass of a square gas cylinder is located at the distdrizencon thex-axis. This
cylinder is placed inside a shock tube filled with a gas of higher density. The light gas
at rest and has an initial density of 1 kg/and a pressure of $@Pa. The gas polytropic
coefficient is equal to 1.4. The still heavy fluid fills the rest of the domain. The heavy g
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FIG.5. Two-phase variable profiles obtained by model (3.1) at times 1.92 ms, 3.84 ms and 5.76 ms. Kam
et al.[23] test problem.
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FIG. 5.—Continued

polytropic exponent is equal to 3. Its initial density is 10 ké/ifhe high-pressure (£®Pa)
chamber begins at = 0 and ends at = 1.5 m. The low-pressure (2®a) chamber begins
atx = 1.5 m and ends at = 3.5 m. The total tube width is 0.60 m. This is summarized in
Fig. 7.

The 2D evolution of the density field are shown in Fig. 8 at time 1.16 ms, 2.14 nr
3.13 ms, 4.23 ms, 5.36 ms, 6.50 ms, 7.63 ms, 8.76 ms, 9.89 ms, and 10.09 ms.

The first graph shows the initial stage of the shock interaction with the bubble. In t
second graph, bubble deformation begins and the shock wave transmitted forms ag
In the third graph, the shock is completely reconstructed. The bubble is now highly
formed. A first jet is clearly visible on the symmetry axis of the domain, producing a bubk
rupture. The secondary bubble is compressed again by another Richtmyer—Meshko
stability. From the fourth graph to the end the bubble undergoes an intense rotation.
total number of cells used for the computations is 350 inxkdirection and 30 in the
y-direction.



354 GAVRILYUK AND SAUREL

Experimental and Computed Pressure Difference at x=1.462 m (KPa)

200 T T T T T

150 1

100 1

50 | 1

_50 1 L 1 i
0 1 2 3 4 5 6

Time (ms)

FIG.6. Comparison of experimental (thick lines) and numerical (thin lines) for the Kaetedaxperiments.

Our goal is to compare the averaged two-dimensional results with the 1D two-ph:
computations. We conserve the same number of cells (350) for 1-D computations.
achieve the 1D multiphase computation, we need closure assumptions. We assume :
that the relaxation velocity coefficiehttends to infinity. We also have to chose the function
m(¢g). The functionm(ypy) is closely related to the energy stored in the heavy fluid du
to inertial phenomena. Iin(gy) is high, the relaxation pressure phenomenon is slow an
nonmonotone. Whem(ypy) is small, a fast pressure relaxation process occurs. Itis not ea
to determine this function for compressible fluids and for the present geometry. Howe\
we will justify the hypothesis that for 2D geometny(¢4) may be considered as a numerical
constant. Indeed, consider a cylinder of radR(s) in an infinite incompressible fluid. The
theory of dimensions shows that the kinetic energy of the fluid per unit length due to 1

Y=3 Y=3
p= 10 kg/m? p=10 kg/m?
P=10%Pa P=10%Pa 03m
Yy=14
Symmetry axis p=1kg/mj
1.5m 0.367 m 0.266 m 1.367m

FIG. 7. Numerical experiment configuration for the shock—bubble interaction problem.
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FIG. 8. Density contours at 10 time instants for the shock-bubble interaction problem.

local radial motion of the bubble is then

dR\?
0 2
goiR <_dt> ,

whereq is a constant to be determined. In contrast to the spherical case, the explicit ve
of this constant is unknown. An estimation shows thhat 2 [25]. Hence, for the 2D case
in the presence oN noninteracting cylinders the corresponding kinetic energy per ur
length is

oo W8 (deg)’
FmaN\dt )~

wheregy = R?N is the volume fraction. This shows that for the plane geometryg)
does not depend apy and may be considered as a numerical parameter.

We have done a sensitivity analysis of the solution with respect to the paramétéren
this parameter is large (say, greater than 1 ISU), the differences between the solutior
the two models (1D and 2D) are quite strong. When this parameter is smaller than 1,
two solutions agree better. When this function is set to 0.1 or less, the solution agrees ¢
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FIG.9. Comparison of the averaged 2D “reference” solution (bold lines) and 1D solution of two-phase mo
(3.1) (thin lines) at instant 2.14 ms.
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FIG. 10. Comparison of the averaged 2D “reference” solution (bold lines) and 1D solution of two-pha
model (3.1) (thin lines) at instant 4.23 ms.
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well and is no longer sensitive to this parameter. When it tends to zero, the source te
become stiff, more difficult to solve, but the solution is nearly indiscernible from that wit
the parameter 0.1. Thus, we retain this value 0.1 for the numerical computations. We t
shown in Figs. 9 and 10 at two time instants, the 2D variables averaged over the ci
section at each point (bold lines). In the same figures the results are compared with tt
1D multiphase model (3.1) (thin lines).

The comparison of the two solutions is shown at time 2.14 ms (Fig. 9) and 4.23 |
(Fig. 10). On the pressure graph of Fig. 9 the shock wave has reached the bubble ar
strongly modified by the interaction. If the bubble was absent the pressure jump would b
5 atm, where it is 4 atm. The main rarefaction wave travels into the high-pressure chan
and is not sensitive to what occurs in the low-pressure chamber. It is important to note
apparition of a secondary rarefaction wave facing left in the direction of the high-pressi
chamber. This rarefaction wave is due to the “bubble” volume compression. Instants la
this wave train is quasi-stationary.

After the interaction with the bubble, the shock wave goes to the pressure value clos
the one it would have if the bubble was absent (Fig. 10). More interesting is the press
oscillation behind the shock front. Its location corresponds perfectly to the bubble pc
tion. This pressure decrease is certainly due to the presence of a strong vortex inside
bubble. This indicates that the rotation will be an important phenomenon to considet
the future. The graphs of density and velocity confirm the previous observation concerr
pressure behavior.

Comparisons between 2D and 1D calculations show that:

e The main features of the flow are quantitatively preserved by 1D model (3.1) (corr
shock wave speed and jumps, main and secondary rarefaction waves),

e The bubble velocity is slightly higher than the velocity of the center of mass obtain
by the 1D model (density graph),

e The rotation effects, related to the presence of a vortex inside the bubble, need t
considered in the 1D model.

Even if the agreement is not perfect between the two simulations, these results are
encouraging.

6. CONCLUSION

Compared with existing models, model (3.1) presents important improvements:

e The model takes into account two macroscopic velocities and one microsco
velocity.

e The model does not suppose that the volume fractions are small.

e Compressibility of each phase is taken into account as well as temperature none
librium.

Interesting features of this model are:

e For a particular case of bubbly liquids, the model is hyperbolic apart from a set
parameters of the zero measure. Its eigenvalues are given explicitly. In the general ca
sufficient criterion is proposed: the convexity of the energy implies the hyperbolicity.

e The mathematical structure of the modelis very clear. The reason for this clear struct
is the use of the Hamilton principle of stationary action and a procedure that is not ba
on Lagrange multipliers.
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This last property is important for the derivation of numerical schemes. We have show
very simple adaptation of the scheme proposed by Saurel and Abgrall [36].

The new multiphase model has been validated by using experimental data and e

solutions. The next stage will be to take into account the rotation in order to describe
possible types of internal nonequilibrium.
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